Abstract:
A threaded joint for steel pipes for use in an oil well which has improved galling resistance and which is protected from rusting comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion. The contact surface of at least one of the pin and the box has a lower layer of a viscous liquid or semisolid lubricating coating comprising at least wax and a fatty acid alkaline earth metal salt and not containing a harmful heavy metal such as lead and an upper layer of a dry solid coating formed from an aqueous resin coating composition, an organic solvent type coating composition, or an ultraviolet curing coating composition.
Abstract:
Provided is a method for stabilizing a dispersion of a carbon nanomaterial in a lubricating oil basestock. The method includes providing a lubricating oil basestock; dispersing a carbon nanomaterial in the lubricating oil basestock; and adding at least one block copolymer thereto. The at least one block copolymer has two or more blocks includes at least one alkenylbenzene block and at least one linear alpha olefin block. The at least one block copolymer is present in an amount sufficient to stabilize the dispersion of the carbon nanomaterial in the lubricating oil basestock. Also provided is a lubricating engine oil having a composition including: a lubricating oil base stock; a carbon nanomaterial dispersed in the lubricating oil basestock; and at least one block copolymer.
Abstract:
An object of the invention is to provide a carbon film laminate having a sliding surface with low friction, low abrasion, and low counterpart aggressiveness using high adhesiveness to a base material, hardness, surface flatness, low counterpart aggressiveness, transparency, and high thermal conductivity which are provided to the carbon film without using liquid and semiliquid lubricants such as lubricating oil. Provided is a carbon film laminate including a base material, a carbon film adhesion reinforcing layer which is provided on the base material and which is formed from silicon oxide (SiOx, x=1 to 2) containing fluorine atoms (F) in a concentration of 1×1019 atoms/cm3 or more, and a carbon film that is formed on the carbon film adhesion reinforcing layer. The carbon film contains fluorine atoms in the film in a concentration of 1×1019 to 1×1021 atoms/cm3, and has an approximate spectrum curve obtained by superimposing, on a peak fitting curve A at a Bragg angle (2θ±0.5°) of 43.9° in an X-ray diffraction spectrum by CuKα1 rays, a peak fitting curve B at 41.7° and a baseline.
Abstract:
A thin adhesive lubricating composition that can cover at least one thread and a screwing abutment of a threaded element of a component of a tubular threaded joint. The screwing abutment can bear against another abutment of another component of the tubular threaded joint in a terminal make up phase. The lubricating composition includes a matrix in which there is dispersed at least one braking additive selected to impart thereto, in addition to lubrication, a coefficient of friction to make it possible to obtain a torque on shoulder resistance value at least equal to a threshold value.
Abstract:
A lubricant composition includes a base oil and melamine cyanurate. The base oil includes a perfluoropolyether oil having a straight chain structure. The lubricant composition is for one of a resin-resin sliding section and a resin-metal sliding section. A melamine cyanurate content is within a range of 1-20% by mass with respect to a sum of the base oil and melamine cyanurate.
Abstract:
The present invention is directed to a method for controlling soot induced viscosity increase in diesel engines, by using as the diesel engine lubricant an oil formulation comprising a base oil containing about 10 to 80 wt % GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil in combination with 20 to 90 wt % conventional Group I petroleum derived base oil, said base oil being further combined with a polymeric viscosity modifier, and to the lubricating oil which effects such control over soot induced viscosity increase.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
In one aspect, a self-lubricating component is provided for a pharmaceutical packaging assembly. The self-lubricating component comprises a polymer composition and an effective amount of a lubricating additive such as, for example, boron nitride. In another aspect, a pharmaceutical packaging assembly may be provided having a surface thereof coated with a lubricating composition comprising boron nitride. The pharmaceutical packaging composition may be, for example, a pre-filled syringe comprising a body (barrel) and a plunger assembly.
Abstract:
A threaded tubular component for drilling or working hydrocarbon wells, including at one of its ends a threaded zone produced on its outer or inner peripheral surface depending on whether the threaded end is male or female in type, in which at least a portion of the end is coated with at least one lubricating dry film including at least 65% by weight of a polyaryletherketone, and a process for depositing the film.
Abstract:
A lube oil composition is provided. The lube oil composition includes a base oil and a carbon nanocapsule grafting with an alkyl group dispersed in the base oil, wherein the carbon nanocapsule is hollow or filled with metal, metal alloy, metal oxide, metal carbide, metal sulfide, metal nitride or metal boride.