Abstract:
Provided herein is a process, compositions and machinery for performing digitally chemical cutting of a fabric, using digital inkjet methodologies and machines, being particularly, but not exclusively, suitable for roll-to-roll printing configuration, and based on digital printing of a fabric-cutting composition and a fabric-penetrating composition directly on the fabric to obtain a cut or perforated fabric.
Abstract:
The present disclosure relates to fibrillated fibers and a method for preparing the same. In the present disclosure, there is provided a preparation method capable of providing fibers suitable for complexing with plastics in a more simplified process. According to the preparation method of the present disclosure, microfibers can be easily miniaturized with little energy by growing fine particles on the microfibers to fibrillate the microfibers, and then applying a shear force thereto, and various physical properties can be expressed from the grown fine particles.
Abstract:
The present invention provides a production method for purified polysaccharide fibers in which carbon disulfide emission is suppressed while efficiently producing purified polysaccharide fibers having excellent strength, purified polysaccharide fibers produced by using the production method, a fiber-rubber complex using the purified polysaccharide fibers, and a tire having excellent tire characteristics using the fiber-rubber complex. The production method for purified polysaccharide fibers of the present invention is a production method for purified polysaccharide fibers of wet-spinning or dry-wet-spinning polysaccharide by bringing a polysaccharide solution obtained by dissolving a polysaccharide raw material in a liquid including an ionic liquid into contact with a solidification liquid including an ionic liquid, in which a concentration of the ionic liquid in the solidification liquid is 0.4% by weight to 50% by weight and the anionic moieties of the ionic liquid in the polysaccharide solution and the ionic liquid in the solidification liquid have one or more types selected from the group consisting of a phosphinate ion, a phosphate ion, and a phosphonate ion.
Abstract:
Acid-resistant and biosoluble glass compositions and products made therefrom. The glass compositions exhibit acid resistance, durability in white water as may be used in a wet laid fabrication process, and good biosolubility. In another aspect, a glass fiber mat is made from such a glass composition, and may be used in the manufacture of lead-acid batteries, for example as a pasting material or battery separator.
Abstract:
Flame resistant fabrics are formed by warp and fill yarns having different fiber contents. The fabrics are constructed, for example, by selection of a suitable weaving pattern, such that the body side of the fabric and the face side of the fabric have different properties. The fabrics described herein can be printable and dyeable on both sides of the fabric and are suitable for use in military and industrial garments. Methods of forming flame resistant fabrics, and methods for forming garments from the fabrics, are also described.
Abstract:
A method for the manufacture of fibrous yarn includes providing an aqueous suspension formed from fibers and at least one rheology modifier; directing the aqueous suspension through at least one nozzle, to form at least one yarn, and subjecting said yarn to dewatering. The at least one nozzle can have an inner diameter of an outlet smaller than or equal to a maximum length weighed fiber length of the fibers.
Abstract:
A pellet made from paper particulate extruded and cut into pellets, the pellet comprising an elongated form having opposite flattened surfaces separated by a pellet thickness. Also a process for producing paper particulate pellets comprising: extruding processed paper particulate into pellets having an elongated form; and flattening the extruded paper particulate such that the pellets have opposite flattened surfaces.
Abstract:
Fire resistant garments are disclosed made from a fabric containing a fiber blend. The fiber blend contains meta-aramid fibers, fire resistant cellulose fibers, non-aromatic polyamide fibers, and optionally para-aramid fibers. The non-aromatic polyamide fibers are present in an amount sufficient to dramatically improve the abrasion resistance of the fabric without adversely interfering with the flame resistant properties. In addition to abrasion resistance, the particular blend of fibers has also been found to dramatically improve or increase various other properties. In one embodiment, the fabric is made with a herringbone weave which has been found to unexpectedly improve tear properties and porosity.
Abstract:
Disclosed is a spun yarn for a fiber-reinforced plastic, which is composed of blended yarns (3a, 3b) of a natural plant fiber and a synthetic fiber. The synthetic fiber is a thermoplastic synthetic fiber capable of serving as a matrix resin in a FRP. Also disclosed is an intermediate for a fiber-reinforced plastic that is a woven fabric, a knitted fabric, a multiaxial warp knitted fabric or a braided fabric, formed of the aforementioned spun yarn for a fiber-reinforced plastic. Also disclosed is a fiber-reinforced plastic molded article that is obtained by heating and press-molding the intermediate for a fiber-reinforced plastic at a mold temperature equal to or higher than the melting point of the synthetic fiber, or by aligning the spun yarn for a fiber-reinforced plastic in at least one direction, heating and press-molding the same at a mold temperature equal to or higher than the melting point of the synthetic fiber. Thus, the spun yarn for a fiber-reinforced plastic that exhibits superior integrity between the natural plant fiber and the synthetic fiber and that also a good moldability can be obtained at a low cost. And furthermore, the intermediate and the fiber-reinforced plastic molded article using the same can be provided.
Abstract:
Fire resistant garments are disclosed made from a fabric containing a fiber blend. The fiber blend contains meta-aramid fibers, fire resistant cellulose fibers, non-aromatic polyamide fibers, and optionally para-aramid fibers. The non-aromatic polyamide fibers are present in an amount sufficient to dramatically improve the abrasion resistance of the fabric without adversely interfering with the flame resistant properties. In addition to abrasion resistance, the particular blend of fibers has also been found to dramatically improve or increase various other properties. In one embodiment, the fabric is made with a herringbone weave which has been found to unexpectedly improve tear properties and porosity.