Abstract:
In a method for processing used cathode material containing carbon, in particular used cathode troughs from aluminum production, the cathode material is put into a shaft furnace and, in order to gasify carbon, is subjected to a thermal treatment in the shaft furnace at a temperature above the ignition temperature of the carbon and above the evaporation temperature of toxic substances contained in the used cathode material. The reaction gases are conducted co-current with the carbon in a first longitudinal section of the shaft furnace and countercurrent to the carbon in a second longitudinal section of the shaft furnace. The reaction gases are drawn from a region of the shaft furnace having an enlarged cross-section between the longitudinal sections and are preferably subjected to an after-treatment.
Abstract:
An apparatus for mixing tank contents including sedimentary material is disclosed. The apparatus includes an agitator connected to a support including a plurality of detachable sections. The apparatus further includes a frame adjacent an opening in a top of the tank. The apparatus also includes an actuatable connector for interconnecting the frame to the support. The connector is configured to be actuated in order to lift a first portion of the support above the frame while a second portion of the support below the frame is maintained, to thereby cause a gap between the first portion and the second portion enabling at least one of the detachable sections to be inserted into the gap. The apparatus also includes at least one actuator for causing the connector to lift the first portion in order to cause the gap, and for lowering the first portion and the second portion.
Abstract:
An apparatus for mixing tank contents including sedimentary material is disclosed. The apparatus includes an agitator connected to a support including a plurality of detachable sections. The apparatus further includes a frame adjacent an opening in a top of the tank. The apparatus also includes an actuatable connector for interconnecting the frame to the support. The connector is configured to be actuated in order to lift a first portion of the support above the frame while a second portion of the support below the frame is maintained, to thereby cause a gap between the first portion and the second portion enabling at least one of the detachable sections to be inserted into the gap. The apparatus also includes at least one actuator for causing the connector to lift the first portion in order to cause the gap, and for lowering the first portion and the second portion.
Abstract:
A method for disposing of solid refinery waste is disclosed. The method includes removing solid waste constituents from inside a refinery tank using excavating machinery, delumping the solid waste constituents, and conveying the delumped solid waste constituents into a mobile tank. The method further includes transporting the delumped solid waste constituents in the mobile tank to a burning facility, adding at least one diluent, mixing, and pumping from the mobile tank a flowable mixture of refinery waste and the at least one diluent at the burning facility.
Abstract:
A system for digesting biodigestible feed that preferably includes the steps of comminuting the feed, introducing feed, an oxygen-containing gas, an accelerant, and bacteria into a digestion zone, the bacteria being suitable for digesting the feed under aerobic, anaerobic, and anoxic conditions. The contents of the digestion zone can be changed from aerobic operation to either anoxic or anaerobic operation, or vice versa, without changing the bacteria in the digestion zone.
Abstract:
An organic compound pyrolysis flashover energy-saving regeneration treatment system for remaking organic waste such as family\industrial garbage, sewer mud, agricultural waste and livestock excreta etc. to become liquid and solid regenerated organic compounds by using a waste pre-treatment unit, an organic waste steaming sterilization unit, an organic waste pyrolysis flashover unit, a green energy generation & steam regeneration unit, a solid-liquid organic compound separation unit, a liquid organic compound regeneration unit and a solid organic compound regeneration unit, which compounds are used as organic fertilizer or feed for livestock farming, the system can effectively achieve the objects of recovering resources, purifying environment, saving energy and reducing carbon and regeneration of organic waste for reuse, it further can increase the efficiency of environmental conservation.
Abstract:
In a method for processing used cathode material containing carbon, in particular used cathode troughs from aluminum production, the cathode material is put into a shaft furnace and, in order to gasify carbon, is subjected to a thermal treatment in the shaft furnace at a temperature above the ignition temperature of the carbon and above the evaporation temperature of toxic substances contained in the used cathode material. The reaction gases are conducted co-current with the carbon in a first longitudinal section of the shaft furnace and countercurrent to the carbon in a second longitudinal section of the shaft furnace. The reaction gases are drawn from a region of the shaft furnace having an enlarged cross-section between the longitudinal sections and are preferably subjected to an after-treatment.
Abstract:
A process for control melting a mixture of coal ash, electric arc furnace dust, recycled glass and additives to create a feedstock. The feedstock is quenched or air dried in a mold to create useful products, such as fracking compounds, abrasives, construction products, building materials, landscaping materials, and the like.
Abstract:
A method controls mass and heat loading of sludge feed into a fluidized bed combustor (FBC) controlled via regulation of a polymer dosage or a sludge feed rate including: continuously monitoring at least one performance characteristic of the FBC; producing an input signal characteristic; analyzing the input signal and determining a first rate of change of the characteristic; generating an output signal based on the first rate of change to control addition of polymer to the FBC; generating a second output signal to control addition of sludge feed to the FBC; and determining a transition point between the addition of polymer and addition of sludge, which transition point is an upper limit of a first rate change to maintain flow so that the value of the characteristic is maintained proximate at the upper limit.
Abstract:
Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.