Abstract:
A semiconductor wafer scanning system includes a confocal optical imaging system with a laser beam being focused on a small spot on the wafer surface to be scanned. The optics include an objective lens located closest to the wafer with means being provided to vary the spacing of the lens from the wafer over small distances to thus change the focal plane of the system. The wafer may be independently driven in two orthogonal directions in a plane generally perpendicular to the imaging system to bring selected portions thereof into view of the optics. During scanning, the wafer is rapidly vibrated in one of the directions while it is slowly moved in the other direction with a series of digital output signals being provided by the light reflected back from the laser spot on the moving wafer to provide precise information for constructing a three dimensional representation of the surface pattern of the wafer.
Abstract:
Implementations disclosed describe, among other things, a sample inspection system that includes an illumination subsystem to illuminate a sample with a plurality of time-spaced light pulses generated, using a pulse multiplexing system, from a source light pulse. The pulse multiplexing system includes a plurality of optical loops, each deploying an optical coupler that outputs a first portion of incident light to a sample and provides a second portion of incident light as an input into the next optical loop. The sample inspection system further includes a collection subsystem to collect a portion of light generated upon interaction of the plurality of time-spaced light pulses with the sample, and a light detection subsystem to detect the collected portion of light.
Abstract:
AMENDMENT TO THE ABSTRACT Please replace the Abstract in the application with the following Abstract, insert the following after the claims: ABSTRACT A method for checking value documents, in particular with regard to their authenticity and/or with regard to their value-document type, involves the following steps: detecting a first plurality of intensity courses on a value document, combining the first plurality of intensity courses or a second plurality of intensity courses selected from the first plurality into a combined intensity course, determining a time constant τ of the combined intensity course, checking the value document based on the time constant τ of the combined intensity course. A corresponding sensor is provided for checking value documents, and an apparatus enables value-document processing with the aforementioned sensor.
Abstract:
An edge portion measuring apparatus for measuring shape of an edge portion of a wafer, including, a holding portion that holds the wafer, a rotating means for rotating the wafer, a sensor including a light projecting portion for projecting a laser light from a light source onto the edge portion of the wafer held by the holding portion, and a light receiving detection unit receiving diffuse reflected light that the laser light projected is reflected at the edge portion of the wafer, wherein, rotating the wafer while holding the wafer, at least in a range from normal direction of a held surface of the wafer to normal direction of a surface opposite to the held surface, projecting the laser light and detecting the diffuse reflected light by the sensor, being able to measure the shape of an entire area of the edge portion of the wafer by a triangulation method.
Abstract:
Surface sensing systems and methods for imaging a scanned surface of a sample via sum-frequency vibrational spectroscopy are disclosed herein. The systems include a sample holder, a visible light source configured to direct a visible light beam incident upon a sampled location of the scanned surface and a tunable IR source configured to direct a tunable IR beam coincident with the visible light beam upon the sampled location. The systems also include a scanning structure configured to scan the visible light beam and the tunable IR beam across the scanned surface, and a light filter configured to receive an emitted beam from the scanned surface and to filter the emitted beam to generate a filtered light beam. The systems further include a light detection system configured to receive the filtered light beam, and an alignment structure. The methods include methods of operating the systems.
Abstract:
The present invention relates to DNA sequencing with reagent cycling on the wiregrid. The sequencing approach suggested with which allows to use a single fluid with no washing steps. Based on strong optical confinement and of excitation light and of cleavage light, the sequencing reaction can be read-out without washing the surface. Stepwise sequencing is achieved by using nucleotides with optically cleavable blocking moieties. After read-out the built in nucleotide is deblocked by cleavage light through the same substrate. This ensures that only bound nucleotides will be unblocked.
Abstract:
A method of inspecting a surface includes loading an inspection object on a stage of a multibeam inspection device configured to generate a beam array, and scanning a plurality of inspection areas of the inspection object at a same time with the beam array, wherein one of the first inspection areas is smaller than an area formed by a quadrangle connecting respective centers of corresponding four adjacent beams of the beam array, and an adjacent area of the one first inspection area is not scanned with the beam array.
Abstract:
A measurement device includes mechanical support elements (101-104) for supporting a sample well, other mechanical support elements (105-109) for supporting a measurement head (112) suitable for optical measurements, and a control system (111) configured to control the measurement head to carry out at least two optical measurements from at least two different measurement locations inside the sample well, where each measurement location is a center point of a capture range from which radiation is captured in the respective optical measurement. The final measurement result is formed from the results of the at least two optical measurements in accordance with a pre-determined rule. The use of the at least two optical measurements from different measurement locations reduces measurement variation in situations where the sample well (153) contains a piece (158) of sample carrier.
Abstract:
The present invention relates to digital pathology, and relates in particular to a digital pathology scanner illumination unit. In order to provide digital pathology scanning with improved illumination, a digital pathology scanner illumination unit (10) is provided that comprises a light source (12), a light mixing chamber (14), and a light diffuser (16). The light source comprises a plurality of light elements (18) that are arranged longitudinally along a linear extension direction. The mixing chamber comprises a transparent volume (22) providing a mixing distance (DM) between the plurality of the light elements and the light diffuser such that light with a uniform intensity is provided at a downstream edge (26) of the mixing chamber; and the mixing chamber is arranged, in terms of light propagation, between the plurality of the light elements and the light diffuser. Further, the light diffuser comprises a diffusing material such that the light is transformed into light that has uniformity at different angles, in particular low angles.
Abstract:
A method of inspecting a surface includes loading an inspection object on a stage of a multibeam inspection device configured to generate a beam array, and scanning a plurality of inspection areas of the inspection object at a same time with the beam array, wherein one of the first inspection areas is smaller than an area formed by a quadrangle connecting respective centers of corresponding four adjacent beams of the beam array, and an adjacent area of the one first inspection area is not scanned with the beam array.