Abstract:
A lamp electrode includes a sealed tube for generating light when powered by an external power supply and a pair of electrodes formed on the ends of the sealed tube. Solder is filled into the space between each electrode and the sealed tube, and formed on the surface of the exterior surface of the electrodes. A method for forming the lamp electrode includes forming a cylindrically shaped electrode on an end of a sealed tube; maintaining a supply of solder in the liquid state; and dipping the end of the tube on which the electrode is formed into the solder.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprise a radiation emitting region and at least one substantially radiation opaque region. The radiation emitting region comprises a pair of dielectric elements disposed in a substantially coaxial arrangement.
Abstract:
An excimer lamp has an arc tube made of dielectric materials capable of transmitting ultraviolet rays, a pair of electrodes facing each other through the dielectric materials forming the arc tube, and a high voltage power supply terminal for supplying high voltage to the electrodes through a high voltage power supply cable, the excimer lamp. The excimer lamp further has an insulated holder provided in the high voltage power supply terminal, wherein the insulated holder has an inner space and the high voltage power supply cable connected to a connector for electric supply is inserted in the insulated holder, and an IC tag, wherein a gap is provided between the high voltage power supply cable and the IC tag.
Abstract:
A method of fabricating an electrode of an external electrode fluorescent lamp (EEFL) includes plating nickel on both ends of a glass tube through an electroless nickel plating process and forming electrodes by dipping the glass tube into an electrode material including zinc, and tin or lead.
Abstract:
An excimer lamp, including a discharge vessel made of silica glass and having a discharge space; a pair of electrodes disposed on the discharge vessel, wherein the discharge space is filled with xenon gas; and an ultraviolet reflection film made from ultraviolet scattering particles, including silica particles and alumina particles, formed on a surface of the discharge vessel exposed to the discharge space. A thickness Y of the ultraviolet reflection film satisfies the expression Y>4X+5, given that a mean particle diameter of the ultraviolet scattering particles making up the ultraviolet reflection film is X (μm).
Abstract:
Disclosed are a lamp, a method of fabricating the same and an LCD having the same. Electrode is disposed on an outer surface of a lamp tube, and an adhesive member is interposed between the electrode and the lamp tube. The adhesive member is hardened and expanded by means of heating, and adheres the electrode to the lamp tube. Thus, voids generated during forming the electrode on the outer surface is removed, and images having a high quality are obtained.
Abstract:
The subject of the present invention is a dielectric barrier discharge (DBD-) lamp (1) for generating and emitting ultraviolet radiation comprising: —a housed discharge gap (3), whereby the housing has at least two walls, whereby at least one of the walls is a dielectric wall and at least one of the walls has an at least partly transparent part, a filling located inside the discharge gap (3), at least two electrical contacting means for electrical contacting associated with at least the two walls, respectively, whereby the discharge gap (3) is formed by at least two discharge sub-volumes (7) and/or discharge sub-areas (8) differing in at least one of their discharge parameters for realizing at least two dominant emission regimes and/or one emission regime with different radiant intensities and a method for producing said DBD-lamp (1).
Abstract:
A flat-type fluorescent lamp device includes first and second substrates facing each other, a plurality of first electrodes on the first substrate disposed along a first direction, each first electrode having protrusions extending from both sides of the first electrode along the first direction, a plurality of second electrodes on the first substrate, the second electrodes each having concave portions that correspond to the protrusions of the first electrode and convex portions that correspond to regions between the protrusions of the first electrode, a first fluorescent layer on an entire surface of the first substrate including the first and second electrodes, and a second fluorescent layer on the second substrate.
Abstract:
Provided is a flat lamp which includes a lower substrate and an upper substrate that form discharge space therebetween disposed facing each other, a plurality of discharge electrodes formed at least on one of the lower substrate and the upper substrate, a plurality of spacers that form a plurality of discharge cells by defining the discharge space, and disposed parallel to the discharge electrodes between the lower substrate and the upper substrate, a plurality of auxiliary electrodes, to which a voltage is induced by applying a voltage to the discharge electrodes, formed on a surface of the spacers, and a fluorescent layer formed on an inner wall of the discharge cells.
Abstract:
A light source device has a bulb, a discharge medium containing rare gas sealed inside the bulb, an internal electrode disposed inside the bulb, and an external electrode disposed outside the bulb. A holder member holds the external electrode so that the external electrode is opposed to the bulb with a predetermined distance of a space therebetween.