Abstract:
Device for treating aqueous effluents comprising:
A tank, A rotary filter arranged in the tank to carry out an aqueous effluent filtration operation, At least one UV lamp disposed in the tank so as to be immersed in the filtered aqueous effluent, At least one catalyst element arranged to be illuminated by the UV lamp and fixed in the tank so as to be immersed in the aqueous effluents and/or fixed on the rotary filter.
Abstract:
Methods and systems for the purification of an aqueous solution comprising a photocatalyst employed as an anode and a cathode in communication with an electrolyte to achieve a current flow wherein a charge is applied between the cathode and the photocatalytic excited anode a corresponding increase in electron-hole pairs occurs.
Abstract:
A system for disinfecting a fluid, including: a flow cell including one or more inlet ports and one or more outlet ports, wherein the flow cell is configured to communicate a fluid containing a biological contaminant from the one or more inlet ports to the one or more outlet portions through an interior portion thereof; and one or more point radiation sources disposed about the flow cell, wherein the one or more point radiation sources are operable for delivering radiation to the biological contaminant; wherein an interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources; and wherein the interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources such that a radiation intensity is uniform throughout the interior portion of the flow cell. In one exemplary embodiment, the flow cell is an integrating sphere. Optionally, the system also includes a photocatalyzing material disposed on at least a portion of the interior surface of the flow cell.
Abstract:
A water purification system includes one or more UV light sources that produce germicidal UV light and provide the UV light to a given amount of fluid contained in a chamber as a batch or as flowing through the chamber. An inner surface of the chamber, that may be reflective, is coated with a thin plastic film, such as polypropylene, that is highly transmissive to UV germicidal light. The thin plastic film separates the inner surface from the fluid, and the UV light passes through the thin plastic film to reach the fluid that is being purified in the chamber. The thin plastic film may be melted at relatively low temperatures to provide heat sealing of the surface to produce the chamber. Alternatively, the thin plastic film may be readily shaped as a bag or pipe that contains or directs fluid flow.
Abstract:
A system for disinfecting a fluid, including: a flow cell including one or more inlet ports and one or more outlet ports, wherein the flow cell is configured to communicate a fluid containing a biological contaminant from the one or more inlet ports to the one or more outlet portions through an interior portion thereof; and one or more point radiation sources disposed about the flow cell, wherein the one or more point radiation sources are operable for delivering radiation to the biological contaminant; wherein an interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources; and wherein the interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources such that a radiation intensity is uniform throughout the interior portion of the flow cell. In one exemplary embodiment, the flow cell is an integrating sphere. Optionally, the system also includes a photocatalyzing material disposed on at least a portion of the interior surface of the flow cell.
Abstract:
A ballast water treatment device includes a filtration device and an irradiation device that irradiates, with ultraviolet rays, filtered water that has been filtered. The filtration device is a device that removes 99.999% or more of L-size organisms having a minimum part size of 50 μm or more, and 90% or more of S-size organisms having a minimum part size of 10 μm or more and less than 50 μm. The irradiation device is capable of sterilizing the filtered water at a flow rate of 250 m3/h and a power consumption of 13 kW to eliminate 90% of S-size organisms immediately after a sterilization treatment.
Abstract:
There is described In another of its aspects, the present invention provides a radiation source assembly comprising: (i) an elongate radiation source; (ii) a positioning element connected to a proximal portion of the elongate radiation source; and (iii) a connecting portion secured to a proximal portion of the positioning element and configured to engage a support element to maintain a distal portion of the elongate radiation source in a cantilevered position. The present radiation source assembly is configured such that the distal portion of the radiation source is cantilevered with the respect to the distal portion of the protective sleeve in which it is disposed. This feature obviates the need to use spacers, stops, springs and the like in a distal portion of the protective sleeve to maintain correct position of the radiation source within the protective sleeve. Further, the present radiation source assembly is advantageous in that allows for withdrawal of the radiation source from the radiation source assembly without the need to disengage all of the components. Thus, it is possible to replace a single radiation source by removing it from the protective sleeve during operation of the fluid treatment system. This operation can be accomplished quickly without the need to shut down the fluid treatment system or otherwise compensate for the fact that one of the radiation source is being serviced.
Abstract:
Disclosed herein is an apparatus having a double wiper structure for sterilizing ballast water. Each wiper for use in removing foreign substances from an ultraviolet lamp has a double structure including a main wiper part and auxiliary wiper parts. The auxiliary wiper parts are disposed on opposite sides of the main wiper part so that when the wiper body is moved forward or backward, the corresponding auxiliary wiper part primarily removes foreign substances before the main wiper part wipes the ultraviolet lamp unit. Each auxiliary wiper part includes an inclined protrusion and a pointed part so that friction between the surface of the ultraviolet lamp and the auxiliary wiper part can be minimized. The main wiper part includes a first blade and a second blade that are respectively disposed on opposite sides of a depression formed in an inner circumferential surface of the main wiper part.
Abstract:
There is disclosed a cleaning apparatus for a radiation source assembly in a fluid treatment system. The cleaning system comprises: a cleaning carriage comprising at least one cleaning element for contact with at least a portion of the exterior of the radiation source assembly; a rodless cylinder comprising an elongate housing having a longitudinal axis; a slidable element disposed on an exterior surface of the elongate housing, the slidable element being: (i) coupled to the cleaning carriage, and (ii) magnetically coupled to a driving element disposed within the elongate housing, the driving element comprising a friction modifying element in contact with an interior surface of the elongate housing to define a first frictional resistance in a rotational direction about the longitudinal axis and a second frictional resistance in an axial direction along the longitudinal axis, the friction modifying element configured such that the first frictional resistance is greater than the second friction resistance; and an elongate motive element coupled to the driving element.
Abstract:
In one of its aspects, the present invention relates to a fluid treatment system comprising: an inlet; an outlet; a fluid treatment zone disposed between the inlet and the outlet. The fluid treatment zone: (i) comprises a first wall surface and a second wall surface opposed to the first wall surface, and (ii) having disposed therein at least one array of rows of radiation source assemblies. Each radiation source assembly has a longitudinal axis transverse to a direction of fluid flow through the fluid treatment zone and each of the first wall surface and the second wall surface comprises a first fluid deflector element and a second fluid deflector element. The first fluid deflector element projecting into the fluid treatment zone to a greater extent than the second fluid deflector element.