Abstract:
UV apparatus comprises a tube (1) of UV transparent material, at least one UV lamp (5) provided externally of the tube so as to emit UV light towards the tube, and a core (3) extending in an axial direction within the tube and configured to create turbulent flow in a liquid passing through the tube. A photocatalyst is provided on at least one surface of the core and is responsive to UV light emitted by the lamp to generate free radicals in liquid passing through the tube.
Abstract:
An apparatus for treating a contaminated fluid has a UV lamp within a tubular housing. A plurality of baffles within the housing create meandering pathways parallel to the lamp for exposing the fluid to the UV light along the entire length of the pathways. A photocatalytic coating on the baffles and inner surfaces of the housing is maintained within a pre-set radial distance, preferably no more than about 75 mm, from the lamp for optimal creation of a photocatalytic reactant. The contaminated fluid flowing through the meandering pathways is maintained in close proximity to the lamp and has adequate time for exposure to the ultraviolet light and photocatalytic reactant for treatment before exiting the housing. The baffles are removably positioned within the housing for convenient maintenance or to alter the length of the pathways, without re-sizing the housing. This apparatus is considered an affordable and compact environmental protection device capable of “redefining pollution control” by potentially mitigating close to 100% of harmful bacteria and toxic compounds.
Abstract:
An UV reactor system that allows single or multiple flange-less reactors to be installed between the flanges of existing piping systems. Benefits include reduced installation space and lamp placement flexibility to improve UV treatment. Each reactor can be rotated, pre and post installation, to provide multiple positions for the radiation sources that are included in each reactor.
Abstract:
Disclosed herein is an apparatus for sterilizing ballast water. Ultraviolet lamps are installed in a body, and a cross-section of the body that is perpendicular to the orientation of the ultraviolet lamps is rectangular. The ultraviolet lamps are arranged at regular intervals in the rectangular cross-section of the body so that the number of ultraviolet lamps arranged per a unit cross-sectional area can be minimized. Thereby, the power consumption of the apparatus and the space required for installation thereof can be reduced. Furthermore, lines, each of which includes ultraviolet lamps arranged in a row perpendicular to the direction of the flow of ballast water, are arranged in the rectangular cross-section of the body. The ultraviolet lamps of each line are disposed between the ultraviolet lamps of the preceding or following line. Thus, ballast water can be prevented from being discharged out of the body without colliding with any ultraviolet lamp.
Abstract:
UV apparatus comprises a tube of UV-transparent material, at least one UV lamp provided externally of the tube so as to emit UV light towards the tube, and a core extending in an axial direction within the tube and configured to create turbulent flow in a liquid passing through the tube. A photocatalyst is provided on at least one surface of the core and is responsive to UV light emitted by the lamp to generate free radicals in liquid passing through the tube.
Abstract:
Known radiator units for generating ultraviolet radiation, particularly for use in food processing or for the treatment of water, have a UV radiator having a radiator tube made of quartz glass or a UV radiator surrounded by a cylindrical jacket tube made of quartz glass having a radiator tube made of quartz glass. Starting from this background, in order to provide a radiator unit for generating ultraviolet radiation, which is suitable for emitting a high radiation power and is also simple and economical to produce, a contaminant- and water-repellent coating is applied to the radiator tube and/or the jacket tube. This coating is generated by use of silicon dioxide or titanium dioxide nano-particles.
Abstract:
Disclosed herein is an apparatus for sterilizing ballast water. Ultraviolet lamps are installed in a body, and a cross-section of the body that is perpendicular to the orientation of the ultraviolet lamps is rectangular. The ultraviolet lamps are arranged at regular intervals in the rectangular cross-section of the body so that the number of ultraviolet lamps arranged per a unit cross-sectional area can be minimized. Thereby, the power consumption of the apparatus and the space required for installation thereof can be reduced. Furthermore, lines, each of which includes ultraviolet lamps arranged in a row perpendicular to the direction of the flow of ballast water, are arranged in the rectangular cross-section of the body. The ultraviolet lamps of each line are disposed between the ultraviolet lamps of the preceding or following line. Thus, ballast water can be prevented from being discharged out of the body without colliding with any ultraviolet lamp.
Abstract:
There is described a cleaning system for a radiation source. The cleaning system comprises: (i) a cleaning chamber housing; (ii) a cleaning cartridge removably disposed in the cleaning chamber housing; and (iii) an endcap element removably coupled to the cleaning chamber housing. The cleaning cartridge comprises a first sealing element and a second sealing element, the first sealing element and the second sealing element configured to provide a substantially fluid tight seal with respect to an exterior surface of the radiation source. A radiation source module and a fluid treatment system comprising the radiation source module are also described.
Abstract:
Disclosed herein is an ultraviolet sterilizer having a watertight function. The ultraviolet sterilizer includes a housing and an ultraviolet sterilization unit. The housing has an inlet through which ballast water is drawn into the housing, and an outlet through which the ballast water is discharged from the housing after the ballast water has been sterilized. The ultraviolet sterilization unit is provided in the housing and includes an ultraviolet lamp applying ultraviolet rays to the ballast water to sterilize the ballast water. The ultraviolet sterilizer further includes a cap which supports each of the opposite ends of the ultraviolet sterilization unit and is watertightly coupled to the housing. Thus, even if the ultraviolet sterilization unit is damaged, ballast water is prevented from being drawn into a reception space which contains external devices, and explosive gas which may cause the ultraviolet sterilizer to explode is also prevented from entering the cap.
Abstract:
An ultraviolet irradiation system includes: an ultraviolet irradiation apparatus including a plurality of ultraviolet lamps; a flowmeter configured to measure a flow rate of the water to be treated that passes through the ultraviolet irradiation apparatus; and an ultraviolet-dose monitoring and controlling apparatus configured to monitor an ultraviolet dose of the ultraviolet irradiation apparatus and to control outputs of the ultraviolet lamps. The plurality of ultraviolet lamps include a first ultraviolet lamp and a plurality of second ultraviolet lamps. The ultraviolet irradiation apparatus includes: a first measurement head configured to measure an ultraviolet intensity of the first ultraviolet lamp; and a plurality of second measurement heads configured to respectively measure ultraviolet intensities of the plurality of the ultraviolet lamps. A distance between the first ultraviolet lamp and the first measurement head is set to a determined value.