Abstract:
A method for feeding back information, UE and base station. The method for feeding back information includes: the UE supports an aperiodic feedback mode 3-2; and when the number of bits of a CSI request is 1 and an aperiodic report is triggered, or when the number of bits of a CSI request is 2 and an aperiodic report of one cell is triggered, a maximum number of physical resource blocks used for feedback by the UE is one of 5-8. Information feedback under MIMO may be enhanced, and a technical solution for information feedback may be further optimized.
Abstract:
Methods and apparatus to report link quality measurements for downlink dual carrier operation are disclosed. Example methods and apparatus disclosed herein implement one or more example techniques for reporting link quality measurements involving, for example, modifying measurement reporting messages to increase the number and/or types of link quality measurements that can be reported, permitting mobile stations, when appropriate, to use different reporting messages capable of supporting more link quality measurements, and/or prioritizing certain link quality measurements to be reported when the reporting messages do not contain sufficient space to report all requested and/or specified link quality measurements.
Abstract:
A method performed by a first wireless device for transmitting control information in a D2D communication with a second wireless device in a wireless telecommunications network is provided. The first wireless device multiplexes coded modulation symbols of the control information with coded modulation symbols of data information on Resources Elements, REs, in a Orthogonal Frequency Division Multiplexing, OFDM, time-frequency grid of a Dedicated Shared CHannel, DSCH, in the D2D communication, wherein the control information comprises Transmission Format Command, TFC, information and Uplink Control Information, UCI. Then, it transmits the coded modulation symbols of the control information multiplexed with the coded modulation symbols of the data information on REs in the OFDM time-frequency grid of the DSCH in the D2D communication to the second wireless device. A first wireless device, a network node and a method performed by the network node are also provided.
Abstract:
A transmitting apparatus is capable of transmitting data at a first frequency and second frequency to a receiving apparatus. A transmitter of the transmitting apparatus transmits a predetermined wideband signal, in a first time period in a frequency band which does not include the first frequency and in a second time period in a frequency band which does not include the second frequency. A quality measuring unit of the receiving apparatus measures the quality of communication with the transmitting apparatus based on the wideband signal received in the first and second time periods.
Abstract:
An apparatus and method for transmitting Uplink Control Information (UCI) over a Physical Uplink Control CHannel (PUCCH) in a communication system. A method includes acquiring, by a user equipment (UE), information for configuration of a first PUCCH format and a second PUCCH format; selecting, by the UE, one of the first PUCCH format and the second PUCCH format, wherein the second PUCCH format is selected, by the UE, for multiple cells from an evolved Node B (eNB); generating, by the UE, UCI to be transmitted; encoding, by the UE, the UCI; performing, by the UE, a Fourier transform (FT) operation on the encoded UCI if the second PUCCH format is selected; performing, by the UE, an inverse Fourier transform (IFT) operation on the encoded UCI or on the Fourier transformed UCI; and transmitting, by the UE, the inverse Fourier transformed UCI using the selected PUCCH format.
Abstract:
An apparatus and method for transmitting Uplink Control Information (UCI) over a Physical Uplink Control CHannel (PUCCH) in a communication system. A method includes acquiring, by a user equipment (UE), from an evolved Node B (eNB), information for a PUCCH format associated with multiple cells; generating, by the UE, UCI to be transmitted, the UCI being arranged in an order of an index of the multiple cells; encoding, by the UE, the UCI; performing, by the UE, a Fourier transform (FT) operation on the encoded UCI; performing, by the UE, an inverse Fourier transform (IFT) operation on the Fourier transformed UCI; and transmitting, by the UE, the inverse Fourier transformed UCI using the PUCCH format.
Abstract:
The present disclosure relates to channel state feedback in a communication system. The method includes obtaining a reference signal from an access point; deriving a rank indication, a codebook subset selection indication and a precoding matrix index based on the obtained reference signal; sending a first feedback message conveying the rank indication and the codebook subset selection indication, and sending a second feedback message conveying the precoding matrix index, to the access point; and receiving, from the access point, data precoded by a matrix derived based on the rank indication, the codebook subset selection indication and the precoding matrix index.
Abstract:
A method for transmitting uplink control information by a communication apparatus configured with a plurality of cells including a Primary Cell (PCell) and a Secondary Cell (SCell) in a wireless communication system. Only one Physical Downlink Shared Channel (PDSCH) is received on the PCell among the plurality of cells in a first subframe. Hybrid Automatic Repeat Request Acknowledgement (HARQ-ACK) information about the PDSCH is transmitted through a Physical Uplink Control Channel (PUCCH) in a second subframe configured for Scheduling Request (SR) transmission. For a positive SR in the second subframe, the HARQ-ACK information is transmitted using a SR PUCCH resource. For a negative SR in the second subframe, the HARQ-ACK information is transmitted using a HARQ-ACK PUCCH resource different from the SR PUCCH resource.
Abstract:
Systems and methods for communicating packets having a plurality of formats are described herein. In some aspects, a signal (SIG) field in the preamble of a packet may indicate whether an extension field, such as an extension SIG field or SIG-B field, is included in the packet. In another aspect, one or more detectors may be used to auto-detect packets formatted as one of at least two different formats based on a short training field (STF) of a received packet. In some aspects, along training field (LTF) in the preamble of a packet may indicate whether the payload is repetition coded.
Abstract:
Embodiments of the present disclosure provide a link adaptation feedback method, including: receiving, by a device, a link adaptation feedback frame sent by a communication peer end, where the link adaptation feedback frame includes a modulation and coding scheme request sequence identifier (MSI), where the MSI is configured to indicate space-time block coding type information.