Abstract:
An image reading apparatus includes a plurality of light-receiving elements, a lens array, and a light-shielding member. All of the light-receiving elements are arranged in a single line having an extremity. The light-shielding member covers one or more light-receiving elements disposed at the extremity.
Abstract:
This invention has as its object to provide an image sensor which can effectively attain higher read resolution, and an image processing apparatus and information processing system using the same. To achieve this object, function members including a light source (6) for irradiating an object to be read (PP) with light, a sensor (3) for receiving light reflected by the object to be read (PP), and an imaging element (7) for forming an image of the reflected light on a light-receiving portion of the sensor (3) are attached to and supported by a support member (1) to have a predetermined positional relationship. In order to assure high attachment positional precision and rigidity for the function members, the support member (1) is formed to have a hollow shape. The support member (1) is formed to have the hollow shape along its longitudinal direction. Two side portions of the support member (1) are formed to have a hollow shape, and are coupled at end portions in the longitudinal direction.
Abstract:
An image reading apparatus having a light guide unit with a light source for applying light to an image reading surface, and a board provided with a photoelectrical conversion element for photoelectrically converting light reflected from the image reading surface into an electrical signal, wherein the light guide unit is supported by the board by making the light guide unit in contact with the board.
Abstract:
An image reading apparatus includes a light source, an elongate light guide member for guiding light emitted from the light source toward an image read line, and a plurality of light receiving elements for receiving light reflected at the image read line. The light guide member includes a first portion, a second portion, and a connecting portion for connecting the first portion and the second portion. The first portion includes a light incidence surface facing the light source for entry of light emitted from the light source, and the light incidence surface is convexly curved widthwise of the light guide member. The second portion includes a light exit surface oriented toward the image read line for emitting light toward the image read line. The connecting portion is narrower than the first portion and the second portion.
Abstract:
An image reading apparatus has a photoelectric converting element for receiving light obtained from an original illuminated by a light source, a lens for imaging the light obtained from the original on the photoelectric converting element, and a guide member for guiding the original to an original reading position, the guide member having a hollow portion for containing the photoelectric converting element and the lens therein.
Abstract:
An optical read sensor includes a circuit board having light-emitting elements mounted thereon, a transparent cover on which an original to be read is placed, light-receiving elements, and a light-guide that guides the light reflected by the original to the light-receiving elements. The light-emitting elements emit light toward the original. The original reflects the light emitted from the light-emitting elements through the transparent cover. The light guide guides the light reflected by the original to the light-receiving elements.
Abstract:
A contact-type image sensor assembly including: an image sensor; a light source for illuminating an original document which has image information; an optical lens for imaging light reflected by the original document onto the image sensor; and a supporting member for supporting the image sensor, the light source and the optical lens, wherein the supporting member includes: a first supporting member for maintaining the distance from the surface of the original document and the light incidental side of the optical lens at a predetermined distance; a second supporting member disposed individually from the first supporting member and acting to maintain the distance from the light emission side of the optical lens to the light receiving side of the image sensor; and a third supporting member for supporting the first and second supporting members at predetermined positions and the third supporting member supports the first and second supporting members in this way that their positions can be adjusted.
Abstract:
An optical reader which comprises: at least one yellow LED array as a light source for lighting original material; an optical lens or fibers for guiding the light reflected from the original material; and an image sensor which changes the reflected light to signal waves. In embodiments of the reader, the light source includes both a yellow LED array and a green LED array with colored filters either provided over the LED arrays or on the optical lens or fibers.
Abstract:
Light guides emit light from the side surface thereof toward the subject to be read, the light emitted to one end surface of each of the light guides. A frame is frame shaped, the frame houses the light guides and a lens, the frame including light guide holders that support a first to-be-supported section on the side surface of the light guides. A cover covers at least a part of one opening of the frame, and does not restrict light from passing through between the light guides and the subject to be read, the cover including light guide holders that support a second to-be-supported section opposite of the first to-be-supported section on the side surface of the light guides. The light guides are fixed inside the frame by the flange portion including the light guide holders provided by the frame and the light guide holders provided by the cover.
Abstract:
Provided is an image scanning unit which makes it possible to improve scanning accuracy while also making the overall body thinner by appropriately positioning a plurality of reflection members within an effective space in a carriage frame without wasting space. An image scanning unit, wherein a frame is divided into at least two spaces facing an irradiation surface, a first accommodation unit for accommodating a light source unit is formed in one of the spaces, a second accommodation unit for accommodating at least one reflection member is formed in the other adjacent space, a first reflection member for initially receiving light reflected from the irradiation surface is positioned at the side opposite the irradiation surface with the first accommodation unit positioned therebetween, and a light-shielding member is provided between the first reflection member and the reflection member positioned in the other space and prevents light that has strayed from a scanning light path from the first reflection member from being incident on the reflection member in the other space.