Abstract:
Circuit boards and methods for their manufacture are disclosed. The circuit boards carry high-speed signals using conductors formed to include lengthwise channels. The channels increase the surface area of the conductors, and therefore enhance the ability of the conductors to carry high-speed signals. In at least some embodiments, a discontinuity also exists between the dielectric constant within the channels and just outside the channels, which is believed to reduce signal loss into the dielectric material.
Abstract:
A base insulating layer is formed on a suspension body. A lead wire for plating and a wiring trace are integrally formed on the base insulating layer. A cover insulating layer is formed on the base insulating layer to cover the lead wire for plating and the wiring trace. A thickness of a portion of the cover insulating layer above a region of the base insulating layer in which the lead wire for plating is formed is set smaller than the thickness of a portion of the cover insulating layer above other regions of the base insulating layer.
Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
Provided are a multilayer board and a light-emitting module having the same. The light-emitting module comprises a light-emitting diode chip and a multilayer board. The multilayer board is electrically connected to the light-emitting diode chip and comprises a nonconductive heat sink via and a thin copper layer.
Abstract:
Buffer structures are provided that can be used to reduce a strain in a conformable electronic system that includes compliant components in electrical communication with more rigid device components. The buffer structures are disposed on, or at least partially embedded in, the conformable electronic system such that the buffer structures overlap with at least a portion of a junction region between a compliant component and a more rigid device component. The buffer structure can have a higher value of Young's modulus than an encapsulant of the conformable electronic system.
Abstract:
A dielectric wave guide (DWG) has a dielectric core member that has a first dielectric constant value. A cladding surrounding the dielectric core member has a second dielectric constant value that is lower than the first dielectric constant. A mating end of the DWG is configured for mating with a second DWG having a matching non-planar shaped mating end. A deformable material is disposed on the surface of the mating end of the DWG, such that when mated to a second DWG, the deformable material fills a gap region between the mating ends of the DWG and the second DWG
Abstract:
Communications connectors include a housing and a printed circuit board that is at least partially mounted in the housing that has a plurality of conductive paths that are arranged in pairs to form a plurality of differential transmission lines. These connectors further include a plurality of contacts, each of which is electrically connected to a respective one of the conductive paths of the printed circuit board. The printed circuit board further includes at least a first floating image plane that is located between a top surface and a bottom surface thereof, the floating image plane being electrically isolated from the plurality of conductive paths.
Abstract:
A method of forming a buried die module includes providing an initial laminate flex layer and forming a die opening through the initial laminate flex layer. A first uncut laminate flex layer is secured to the first surface of the initial laminate flex layer by way of an adhesive material and a die is positioned within the die opening of the initial laminate flex layer and onto the adhesive material. A second uncut laminate flex layer is secured to the second surface of the initial laminate flex layer by way of an adhesive material and the adhesive materials are then cured. Vias and metal interconnects are formed in and on the first and second uncut laminate flex layers, with each of the metal interconnects extending through a respective via and being directly metalized to a metal interconnect on the initial laminate flex layer or a die pad on the die.
Abstract:
A method for manufacturing a printed circuit board including providing a first resin substrate having a resin plate and a circuit pattern formed on a surface of the resin plate, providing a second resin substrate having a resin plate and an accommodation portion formed in the resin plate of the second substrate, connecting an electrode of a capacitor to the circuit pattern of the first substrate with a bonding material such that the capacitor is mounted to the first substrate, attaching the second substrate to the resin substrate through a bonding resin layer such that the capacitor on the first substrate is accommodated in the accommodation portion of the second substrate, and forming a via hole in the first substrate such that the via hole is electrically connected to the electrode of the capacitor in the accommodation portion of the second substrate.
Abstract:
A printed circuit board (PCB) having a decoupling capacitor includes: a PCB including a power supply layer, ground layer, and first decoupling capacitor; a package mounted at a surface of the PCB, wherein the first decoupling capacitor is embedded in a via hole of the PCB, and a first electrode of the first decoupling capacitor is connected to one of power supply pins of the package, and a second electrode of the first decoupling capacitor is connected to the ground layer.