Abstract:
An apparatus for helping to protect an occupant (15 or 16) of a vehicle (17) includes an inflatable vehicle occupant protection device (10) and an inflation fluid source. The inflatable vehicle occupant protection device (10) has a stored, deflated position and an inflated position. The inflation fluid source provides inflation fluid to inflate the inflatable vehicle occupant protection device (10). The inflatable vehicle occupant protection device (10) has a first panel portion (501) for, when the inflatable vehicle occupant protection device (10) is inflated, protecting an adult size vehicle occupant (15). The inflatable vehicle occupant protection device (10) has a second panel portion (502) for, when the inflatable vehicle occupant protection device (10) is inflated, defining a downwardly open pocket (520) for receiving a portion of a child size vehicle occupant (16).
Abstract:
A product identification method and associated system may include providing an identification element that corresponds to a consumable product, the identification element at least one of being portable by a user and being readable by a scanner; and at least one of marking information related to the consumable product on the identification element and storing information related to the consumable product in the identification element. Also, a product identification device may include an identification element, and information related to consumable product which is at least one of marked on the identification element and stored in the identification element.
Abstract:
An interface antenna is positioned between a tag antenna associated with a tag and a reader antenna associated with a reader. The interface antenna receives an electromagnetic carrier signal transmitted by the reader antenna and causes an increase in intensity of the electromagnetic carrier signal at the location of the tag antenna, thereby increasing the distance over which the tag can communicate with the reader. Where the tag is attached to a packaged object, the interface antenna may be included in the package to allow wireless data communication between the tag and a reader external to the package. For example, the interface antenna may be attached to a label on the package. At least a portion of the interface antenna may be formed from a conductive ink applied to the label and/or the container. The object may be a module, also known as a customer replaceable unit (CRU), and the tag may be configured as a customer replaceable unit monitor (CRUM).
Abstract:
A replaceable unit monitor reader system includes a host processor and a coupler board. The coupler board has a detection circuitry that provides an auto-detect, auto-initiate and/or auto-select ability. After receiving command from the host processor, the coupler board enables communication with a CRUM without requiring a further command from the host processor.
Abstract:
Systems and methods provide an acknowledgement protocol on completion of data transmission. A coupler board of a wireless identification system interfaces between a host processor of the wireless identification system and a replaceable unit monitor. The coupler board transmits data to the replaceable unit monitor. The replaceable unit monitor transmits an acknowledgement signal to the coupler board to indicate successful completion of the data transmission.
Abstract:
Programming an electronic monitoring tag attached to a printing apparatus replaceable module includes electronically reading tag identification data from an electronic monitoring tag associated with the replaceable module, and electronically verifying that the tag identification data matches predetermined identification criteria. If the tag identification data matches the predetermined identification criteria, electronically programming the electronic monitoring tag with tag content.
Abstract:
An electronic diagnostic device for testing electronic monitoring tags for devices such as replaceable modules for a printing apparatus includes a tag reader with a reader wireless communication element. The tag reader is adapted to read tag diagnostic information from an electronic monitoring tag. The electronic diagnostic device further includes a data processor in communication with the tag reader. The data processor is adapted to determine from the tag diagnostic data whether the electronic monitoring tag is operating within predetermined parameters, to identify one of a predetermined set of error categories if the electronic monitoring tag is operating outside the predetermined parameters, and to generate error category information. The electronic diagnostic device further includes a results communication element adapted to communicate the error category information generated by the data processor. The diagnostic device may also communicate correction information to the electronic monitoring tag.
Abstract:
In a printing apparatus, verification of the correctness of a particular replaceable module takes place before an operating element of the printing apparatus fully engages the replaceable module. A printing apparatus coupler establishes a communication link with a tag on the replaceable module as the replaceable module is being inserted into the printing apparatus. The printing apparatus coupler receives module identifying information from the tag. The coupler determines from the identifying information whether the replaceable module is appropriate for that location in that printing apparatus, and performs either an acceptance action to accept the replaceable module, or a rejection action to reject the module.
Abstract:
A rotatable charging apparatus includes a length extending between a first end and a second end, with the rotatable charging apparatus centered about an axis parallel to the length. The rotatable charging apparatus outer periphery forms N apparatus positions. One charging device is fixed to each of N−1 apparatus positions. The remaining (Nth) apparatus position is devoid of a charging device, thus forming an “empty” charging device position. A host printing machine selectively causes the rotatable charging apparatus to rotate about its axis thereby selectively position any of its N−1 charging devices to face a proximately-located photosensitive element. When a problem exists with the current charging device, or when the total number of operating hours of the current charging device exceeds a fixed threshold, the printing machine causes the rotatable charging apparatus to rotate from its current charging device to position a new charging device facing the photosensitive element. Also, the printing machine causes the rotatable charging apparatus to rotate from its current charging device to the empty charging device position facing the photosensitive element when a power-down or hard-stop condition exists in the printing machine.
Abstract:
A fitting apparatus for fluidly coupling a plurality of pipes together includes a flexible bladder which fluidly couples a plurality of pipes together. A rigid shell is positionable around the bladder in an attachment position. The rigid shell comprises two portions which are couplable to each other to position the shell in the attachment position. Collars are provided which threadably attach to the rigid shell.