Abstract:
A stent crimping apparatus is provided which includes a crimping assembly adapted to crimp the stent, a clamp assembly configured to secure the medical device; and a control unit configured to control the movement of the crimp assembly. The clamp assembly includes a lower clamp device defining a seating groove formed and dimensioned to seat a portion of the medical device therein, and a retaining assembly having an elastomeric member. This elastomeric member defines a contacting groove oriented in an opposed manner proximate to at least a portion of the seating groove. The clamp assembly further includes an actuation mechanism associated with the retaining assembly and the lower clamp device such that operation thereof causes the retaining assembly to move between an opened condition and a closed condition. In the opened condition, the medical device can be positioned between the lower clamp device and the retaining assembly, and in the closed condition, retaining the medical device between the contacting groove of the elastomeric member and the seating groove of the lower clamp device.
Abstract:
A machine and process for commercial and industrial food waste densification and removal combining a leak proof trailer, a densification system, a trash container, and a dumping mechanism, into a unified collection apparatus. An organic waste generator such as a restaurant can easily store large amounts of its organic liquid and semi-liquid refuse and wastes onsite until the unit is full, then a trash hauler can transport this waste in the leak proof trailer to a municipal landfill or other processing location.
Abstract:
Combinatorially generated peptides are provided that have binding affinity for polymethylmethacrylate (PMMA). The peptides may be used to deliver benefit agents to various PMMA surfaces.
Abstract:
An apparatus for use in parallel reaction of materials. The apparatus includes a base having a plurality of reaction wells, each of the reaction wells having a closed lower end and open upper end for receiving reactant materials. A cover is configured for sealing engagement with the base to form a housing enclosing the plurality of reaction wells and defining a common pressure chamber in communication with the reaction wells. The apparatus further includes an inlet port in communication with the pressure chamber for supplying pressurized fluid to the chamber to pressurize the reaction wells. The housing is configured to sustain a pressure substantially above atmospheric pressure.
Abstract:
Disclosed herein are methods for determining peptide motifs having binding affinity for a specified substrate. The method proceeds through the analysis of a population of peptides having some affinity for a substrate for the identification of the presence of subsequences that occur statistically more frequently than by random chance. These subsequences are then assembled into motifs having reproducible strong binding affinity for the subject substrate.
Abstract:
Endoprosthesis, such as a stent, includes at least one annular element defined by a first set of strut members interconnected to define apices proximate opposite sides of the annular element. The annular element further includes a foot extension extending between at least one pair of circumferentially-adjacent strut members. The foot extension has first and second foot portions extending circumferentially from corresponding ends of the circumferentially-adjacent strut members, and are contoured to provide at least two areas of flexure. The first and second foot portions are joined at a toe portion of the foot extension, and define a circumferentially-directed apex between the pair of circumferentially-adjacent strut members. Preferably, at least one or more additional annular elements, each defined by interconnected strut members, are provided. The annular elements are generally expandable between a delivery configuration and a deployed configuration. The annular elements are longitudinally aligned and connected at connection locations. Preferably, each connection location includes a foot extension, such as by an overlapping pattern between the longitudinally-adjacent annular elements or by a connector extending therebetween.
Abstract:
Endoprosthesis, such as a stent, includes at least one annular element defined by a first set of strut members interconnected to define apices proximate opposite sides of the annular element. The annular element further includes a foot extension extending between at least one pair of circumferentially-adjacent strut members. The foot extension has first and second foot portions extending circumferentially from corresponding ends of the circumferentially-adjacent strut members, and are contoured to provide at least two areas of flexure. The first and second foot portions are joined at a toe portion of the foot extension, and define a circumferentially-directed apex between the pair of circumferentially-adjacent strut members. Preferably, at least one or more additional annular elements, each defined by interconnected strut members, are provided. The annular elements are generally expandable between a delivery configuration and a deployed configuration. The annular elements are longitudinally aligned and connected at connection locations. Preferably, each connection location includes a foot extension, such as by an overlapping pattern between the longitudinally-adjacent annular elements or by a connector extending therebetween.
Abstract:
A selective hydrogenation catalyst composition comprises at least two different metal components selected from Groups 8 to 10 of the Periodic Table of Elements, one of which may be rhodium, and at least one metal component selected from Group 13 of the Periodic Table of Elements, such as indium.
Abstract:
This invention relates to a bioprocess engineering solution for a product removal process for use in a biofermentation. The invention discloses a process for withdrawing an aliquot of broth from a biofermentation vessel during at least a portion of the biofermentation, removing biocatalyst and water, chromatographically separating biofermentation products from the withdrawn broth using water as an eluent, and returning the remaining components of the broth back to the biofermentation vessel. Process chromatography permits highly selective separation of the target molecule, preventing feedback inhibition of the biofermentation.