Abstract:
Provided is a process of making a polyphenylene oxide prepolymer, comprising a step of reacting a reactive cycloolefin and a vinyl-containing polyphenylene oxide in the presence of a ruthenium catalyst. The reactive cycloolefin may be selected from dicyclopentadiene monomer, dicyclopentadiene oligomer, dicyclopentadiene polymer, norbornene monomer, norbornene oligomer, norbornene polymer, and a combination thereof; the vinyl-containing polyphenylene oxide may be selected from divinylbenzyl polyphenylene oxide resin, vinylbenzyl-modified polyphenylene oxide resin, methacrylic polyphenylene oxide resin, and a combination thereof; the ruthenium catalyst may be a Grubbs catalyst. Also provided are a polyphenylene oxide prepolymer made by the process, a resin composition containing the polyphenylene oxide prepolymer, and a product made from the resin composition.
Abstract:
A multi-layer printed circuit board comprises: a core comprising a core insulation layer and traces formed on two sides of the core insulation layer; a plurality of insulation layers sequentially formed at two sides of the core; and a plurality of trace layers respectively formed between two insulation layers and on the outmost insulation layers; wherein the core insulation layer contains a resin material different from that of the insulation layers, such that the core insulation layer has a dimensional stability superior to that of the insulation layers.
Abstract:
A multi-layer printed circuit board comprises: a core comprising a core insulation layer and traces formed on two sides of the core insulation layer; a plurality of insulation layers sequentially formed at two sides of the core; and a plurality of trace layers respectively formed between two insulation layers and on the outmost insulation layers; wherein the core insulation layer contains a resin material different from that of the insulation layers, such that the core insulation layer has a dimensional stability superior to that of the insulation layers.
Abstract:
A resin composition includes (A) an epoxy resin; (B) a benzoxazine (BZ) resin; (C) a styrene maleic anhydride (SMA) copolymer; and (D) a polyester. The resin composition includes specific ingredients of a polyester and is characterized by specific proportions thereof so as to achieve a low delta Tg value of copper clad laminates manufactured in accordance with the resin composition and attain a low dielectric constant, a low dielectric dissipation factor, high heat resistance, and high fire retardation of the copper clad laminates and printed circuit boards manufactured in accordance with the resin composition.
Abstract:
A multi-layer printed circuit board comprises: a core comprising a core insulation layer and traces formed on two sides of the core insulation layer; a plurality of insulation layers sequentially formed at two sides of the core; and a plurality of trace layers respectively formed between two insulation layers and on the outmost insulation layers; wherein the core insulation layer contains a resin material different from that of the insulation layers, such that the core insulation layer has a dimensional stability superior to that of the insulation layers.
Abstract:
A phosphazene compound having a vinyl group is manufactured by a reaction between a vinyl compound and a phosphazene compound having a hydroxyl group and added to a resin composition for manufacturing a prepreg or a resin film so as to be applicable to copper-clad laminates and printed circuit boards to thereby achieve satisfactory circuit laminate properties, namely low coefficient of thermal expansion, low dielectric properties, heat resistant, fire resistant, and halogen-free.
Abstract:
A halogen-free resin composition includes (A) 100 parts by weight of polyphenylene oxide resin; (B) 10 to 50 parts by weight of maleimide resin; (C) 5 to 100 parts by weight of polybutadiene copolymer; (D) 5 to 30 parts by weight of cyanate ester resin; and (E) 15 to 150 parts by weight of phosphazene. The halogen-free resin composition is characterized by specific ingredients and proportions thereof to achieve circuit board laminate properties, such as a high glass transition temperature, low coefficient of thermal expansion, low dielectric properties, heat resistance, flame retardation, and being halogen-free, and thus is applicable to the manufacturing of a prepreg or resin film, thereby being applicable to the manufacturing of metal laminates and printed circuit boards.
Abstract:
The halogen-free resin composition comprises (A) 100 parts by weight of cyanate ester resin; (B) 5 to 50 parts by weight of styrene-maleic anhydride; (C) 5 to 100 parts by weight of polyphenylene oxide resin; (D) 10 to 150 parts by weight of phosphazene; and (E) 10 to 1000 parts by weight of inorganic filler. By using specific components at specific proportions, the halogen-free resin composition offers the features of low dielectric constant, low dissipation factor, high heat resistance and high flame retardancy, and can be made into prepreg or resin film, and thereby used in copper clad laminate or printed circuit board.
Abstract:
A resin composition is provided, which comprises: 1 part by weight to 20 parts by weight of a first resin represented by the following formula (1); and 70 parts by weight of a vinyl group-containing polyphenylene ether resin, wherein m is an integer ranging from 10 to 250. The present invention also provides an article manufactured using the aforesaid resin composition.
Abstract:
A prepolymer and a resin composition containing the prepolymer are provided. The prepolymer is obtained from a prepolymerization reaction of a mixture, the mixture at least including dicyclopentadiene-ethylidenenorbornene copolymer and acenaphthylene in a weight ratio of between 1:1 and 5:1. The resin composition may be used to make various articles, including a resin film, a prepreg, a laminate or a printed circuit board, and at least one of the following properties can be improved, including dielectric constant, dissipation factor, copper foil peeling strength, X-axis coefficient of thermal expansion and glass transition temperature.