Abstract:
A method for electrically contacting a rear side of a semiconductor substrate when processing the semiconductor substrate includes the step of placing the semiconductor substrate with a substrate rear side on a substrate holder such that an electrically conductive contact layer formed of a semiconductor material is disposed between the semiconductor substrate and the substrate holder.
Abstract:
The bipolar transistor is produced such that a connection region of its base is provided with a silicide layer, so that a base resistance of the bipolar transistor is small. No silicide layer is produced between an emitter and an emitter contact and between a connection region of a collector and a collector contact. The base is produced by in situ-doped epitaxy in a region in which a first insulating layer is removed by isotropic etching such that the connection region of the base which is arranged on the first insulating layer is undercut. In order to avoid defects of a substrate in which the bipolar transistor is partly produced, isotropic etching is used for the patterning of auxiliary layers, whereby etching is selective with respect to auxiliary layers lying above, which are patterned by anisotropic etching.
Abstract:
A manufacturing method for a capacitor in an integrated memory circuit includes initially depositing a first conducting layer and an auxiliary layer acting as an etch-stop onto a carrier. Then a layer sequence which contains alternating layers of the first material and a second material is produced on top of the first conducting layer and the auxiliary layer. The layer sequence may, in particular, have p+/p− silicon layers or silicon/germanium layers. A layer structure with a base of a capacitor to be produced is formed from the layer sequence. Sides of the layer structure are provided with a conducting supporting structure. An opening is formed inside the layer structure, all the way down to the auxiliary layer and then the auxiliary layer and the layers made of the second material are removed. A free surface of the layers made of the first material and the supporting structure are provided with a capacitor dielectric onto which a counter electrode is applied.
Abstract:
An integrated electrical circuit has at least one memory cell, in which the memory cell is disposed in the region of a surface of a semiconductor substrate. The memory cell contains at least two inverters that are electrically connected to one another. The inverters each contain two complementary MOS transistors having a source, a drain and a channel, the channels of the complementary MOS transistors having different conductivity types. According to the invention, the integrated electrical circuit is constructed in such a way that the inverters are disposed perpendicularly to the surface of the semiconductor substrate. The source, the drain and the channel of the complementary MOS transistors are formed by layers which lie one on top of the other and are disposed in such a way that the complementary MOS transistors are situated one above the other. The invention furthermore relates to a method for fabricating the integrated electrical circuit.
Abstract:
For manufacturing a capacitor that is essentially suited for DRAM arrangements, column structures that form an electrode of the capacitor are etched upon employment of a statistical mask that is produced without lithographic steps by nucleus formation of Si/Ge and subsequent selective epitaxy. Structure sizes below 100 nm can be realized in the statistical mask. Surface enlargement factors up to 60 are thus achieved.
Abstract:
On a carrier a layer sequence is applied which contains alternatingly layers made of a first conducting material and a second material in which both materials are different from a carrier material. An opening is made in the layer sequence, which is filled with a conducting material so that a central supporting structure is produced. Then the layer sequence is structured corresponding to the dimensions of a capacitor and the layers made of the second material are removed selectively, so that a first capacitor electrode is formed. The layer sequence may have especially p.sup.+ -/p.sup.- silicon layers or silicon/germanium layers. An etch-stop layer can also be incorporated as the lowest or second-lowest layer.
Abstract:
For manufacturing fine structures, nuclei that define the dimensions of the fine structures are formed on the surface of a substrate in a CVD process upon employment of a first process gas that contains SiH.sub.4 and GeH.sub.4 in a carrier gas. The nuclei can be employed both as a mask, for example, when etching or implanting, as will as active or passive component parts that remain in the structure, for example, as charge storages in the dielectric of an EEPROM.
Abstract:
Capacitors, in particular stacked capacitors for a dynamic memory cell configuration are manufactured by first forming a sequence of layers, which include layers made of a first conductive material alternating with layers made of a second material. The second material can be selectively etched with respect to the first material. Layered structures are formed from the sequence of layers, with the flanks of the layered structures each having a conductive support structure. The layered structures are formed with openings, such as gaps, in which the surface of the layers is exposed. The layers made of the second material are selectively removed with respect to the layers made of the first material. The exposed surface of the layers made of the first material and of the support structure are provided with a capacitor dielectric, onto which a counter-electrode is placed. The capacitor is made by etching p.sup.- -doped polysilicon that is selective to p.sup.+ -doped polysilicon.