Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
A method and apparatus disclosed herein apply to processing a substrate, and more specifically to a method and apparatus for improving photolithography processes. The apparatus includes a chamber body, a substrate support disposed within the chamber body, and an electrode assembly. The substrate support has a top plate disposed above the substrate support, a bottom plate disposed below the substrate support, and a plurality of electrodes connecting the top plate to the bottom plate. A voltage is applied to the plurality of electrodes to generate an electric field. Methods for exposing a photoresist layer on a substrate to an electric field are also disclosed herein.
Abstract:
The present disclosure provides methods and an apparatus for controlling and modifying line width roughness (LWR) of a photoresist layer with enhanced electron spinning control. In one embodiment, an apparatus for controlling a line width roughness of a photoresist layer disposed on a substrate includes a processing chamber having a chamber body having a top wall, side wall and a bottom wall defining an interior processing region, a support pedestal disposed in the interior processing region of the processing chamber, and a plasma generator source disposed in the processing chamber operable to provide predominantly an electron beam source to the interior processing region.
Abstract:
Embodiments of the present invention relate to hollow cathode plasma sources with improved uniformity. One embodiment of the present invention provides a hollow cathode assembly having a conductive rod disposed in an inner volume along a central axis of a hollow cathode. The conductive rod being closest to the ground electrode and having the sharpest features of the hollow cathode becomes the point of plasma ignition. Since the conductive rod is positioned along the central axis, the plasma is ignited at symmetrically about the central axis thus improving plasma uniformity and reducing skews.
Abstract:
A method of processing a substrate. The method including delivering, by an RF generator, an RF signal to a processing volume of a processing chamber through an RF match including a configurable impedance altering element. Measuring in real-time, an electrical characteristic of the RF signal. Determining in real-time, a target electrical characteristic based upon a comparison between a calibrated electrical characteristic value and the measured electrical characteristic, in which the calibrated electrical characteristic value is selected to achieve at least one desired plasma processing parameter result. Adjusting in real-time, a setting of the configurable impedance altering element of the RF match to achieve the target electrical characteristic and maintaining, the target electrical characteristic by controlling the setting of the configurable impedance altering element of the RF match.
Abstract:
Methods and apparatus for a point of use remote plasma source are provided. In embodiments, a remote plasma apparatus includes: an enclosure surrounding a cavity; a first conductor surrounding a first portion of the enclosure; a second conductor surrounding a second portion of the enclosure, wherein the first portion of the enclosure and the second portion of the enclosure overlap by an overlap amount, and wherein each of the first conductor and the second conductor are circumferentially discontinuous; a dielectric layer disposed between and separating the first conductor and the second conductor; a gas inlet configured to flow a gas into the cavity; and a gas outlet disposed in a bottom of the enclosure and configured to flow the gas out of the cavity.
Abstract:
Some embodiments are directed to a tuning circuit. The tuning circuit generally includes: a first impedance coupled between a first terminal and a second terminal of the tuning circuit, wherein the first terminal is coupled to a generator and the second terminal is coupled to a load; a second impedance coupled between the first impedance of the tuning circuit and a reference potential node; and a signal path coupled to the first impedance or the second impedance, the signal path comprising an inductive element and a first switch coupled to the inductive element, wherein a control input of the first switch is coupled to a control input of the tuning circuit configured to receive a control signal associated with a pulsed voltage (PV) waveform.
Abstract:
Embodiments of the present disclosure include an apparatus and methods for the plasma processing of a substrate. Some embodiments are directed to a plasma processing chamber. The plasma processing chamber generally includes a planar coil region comprising a concentric coil region comprising a first concentric coil and a second concentric coil, and a power supply circuit coupled to the first concentric coil and the second concentric coil. The first concentric coil may include a first coil with a diameter measured in a direction parallel to a first plane that is smaller than the diameter of a second coil included in the second concentric coil. The power supply circuit may be configured to bias the first concentric coil and the second concentric coil to adjust a generated magnetic field in a region of control of a plasma in the plasma processing chamber to control a plasma density of the plasma.
Abstract:
Embodiments provided herein generally include apparatus, plasma processing systems and methods for generation of a waveform for plasma processing of a substrate in a processing chamber. One embodiment includes a waveform generator having a voltage source selectively coupled to an output node, where the output node is configured to be coupled to an electrode disposed within a processing chamber, and where the output node is selectively coupled to a ground node. The waveform generator may also include a radio frequency (RF) signal generator, and a first filter coupled between the RF signal generator and the output node.
Abstract:
Methods and apparatus for clamping a substrate comprise i. placing a substrate on a clamping surface of a substrate support having a plurality of electrodes spaced from one another including a first electrode and a second electrode; ii. measuring substrate bow of the substrate; iii. determining, based on the measured substrate bow, a first voltage to be applied to the first electrode and a second voltage to be applied to the second electrode, wherein the first voltage is an AC voltage and the second voltage is an AC or a DC voltage; and iv. applying the first voltage to the first electrode and the second voltage to the second electrode to clamp the substrate to the substrate support.