Abstract:
Recovery points can be used for replicating a virtual machine and reverting the virtual machine to a different state. A filter driver can monitor and capture input/output commands between a virtual machine and a virtual machine disk. The captured input/output commands can be used to create a recovery point. The recovery point can be associated with a bitmap that may be used to identify data blocks that have been modified between two versions of the virtual machine. Using this bitmap, a virtual machine may be reverted or restored to a different state by replacing modified data blocks and without replacing the entire virtual machine disk.
Abstract:
The disclosed systems and methods enable an application to start operating and servicing users soon after and during the course of its backup data being restored, no matter how long the restore may take. This is referred to as “instant application recovery” in view of the fact that the application may be put back in service soon after the restore operation begins. Any primary data generated by the application during “instant application recovery” is not only retained, but is efficiently updated into restored data. An enhanced data agent and an associated pseudo-storage-device driver, which execute on the same client computing device as the application, enable the application to operate substantially concurrently with a full restore of backed up data. According to the illustrative embodiment, the pseudo-storage-device driver presents a pseudo-volume to the file system associated with the application, such that the pseudo-volume may be used as a store for primary data during the period of “instant application recovery.”
Abstract:
According to certain aspects, a method of creating customized bootable images for client computing devices in an information management system can include: creating a backup copy of each of a plurality of client computing devices, including a first client computing device; subsequent to receiving a request to restore the first client computing device to the state at a first time, creating a customized bootable image that is configured to directly restore the first client computing device to the state at the first time, wherein the customized bootable image includes system state specific to the first client computing device at the first time and one or more drivers associated with hardware existing at time of restore on a computing device to be rebooted; and rebooting the computing device to the state of the first client computing device at the first time from the customized bootable image.
Abstract:
Hypervisor-independent block-level live browse is used for directly accessing backed up virtual machine (VM) data. Hypervisor-free file-level recovery (block-level pseudo-mount) from backed up VMs also is disclosed. Backed up virtual machine (“VM”) data can be browsed without needing or using a hypervisor. Individual backed up VM files can be requested and restored to anywhere without a hypervisor and without the need to restore the rest of the backed up virtual disk. Hypervisor-agnostic VM backups can be browsed and recovered without a hypervisor and from anywhere, and individual backed up VM files can be restored to anywhere, e.g., to a different VM platform, to a non-VM environment, without restoring an entire virtual disk, and without a recovery data agent at the destination.
Abstract:
An illustrative pseudo-file-system driver uses deduplication functionality and resources in a storage management system to provide an application and/or a virtual machine with access to a locally-stored file system. From the perspective of the application/virtual machine, the file system appears to be of virtually unlimited capacity. The pseudo-file-system driver instantiates the file system in primary storage, e.g., configured on a local disk. The application/virtual machine requires no configured settings or limits for the file system's storage capacity, and may thus treat the file system as “infinite.” The pseudo-file-system driver intercepts write requests and may use the deduplication infrastructure in the storage management system to offload excess data from local primary storage to deduplicated secondary storage, based on a deduplication database. The pseudo-file-system driver also intercepts read requests and in response may restore data from deduplicated secondary storage to primary storage, also based on the deduplication database.
Abstract:
According to certain aspects, a method of creating customized bootable images for client computing devices in an information management system can include: creating a backup copy of each of a plurality of client computing devices, including a first client computing device; subsequent to receiving a request to restore the first client computing device to the state at a first time, creating a customized bootable image that is configured to directly restore the first client computing device to the state at the first time, wherein the customized bootable image includes system state specific to the first client computing device at the first time and one or more drivers associated with hardware existing at time of restore on a computing device to be rebooted; and rebooting the computing device to the state of the first client computing device at the first time from the customized bootable image.
Abstract:
The present enhancement leaves production systems undisturbed while a remote application (“testbed application”) executes elsewhere (“testbed host”). An intermediary computing device hosts an enhanced pseudo-disk driver, pseudo-disks, and an enhanced media agent. The enhanced pseudo-disk driver creates the pseudo-disks, each one representing an associated point-in-time backup image residing in secondary storage. A network, e.g., an Internet Protocol (IP) network or a Fibre Channel (FC) Storage Area Network (SAN), connects the intermediary device with the testbed host, and the enhanced media agent exposes pseudo-disks over the network using iSCSI or FC protocol, respectively. The testbed application uses an exposed pseudo-disk as its recovery data source, such that pseudo-disk resources provide data on an as-needed basis sufficient for the testbed application to operate, yet (a) without restoring the entire associated backup image from secondary storage and (b) without impacting the production environment.
Abstract:
An illustrative pseudo-file-system driver uses deduplication functionality and resources in a storage management system to provide an application and/or a virtual machine with access to a locally-stored file system. From the perspective of the application/virtual machine, the file system appears to be of virtually unlimited capacity. The pseudo-file-system driver instantiates the file system in primary storage, e.g., configured on a local disk. The application/virtual machine requires no configured settings or limits for the file system's storage capacity, and may thus treat the file system as “infinite.” The pseudo-file-system driver intercepts write requests and may use the deduplication infrastructure in the storage management system to offload excess data from local primary storage to deduplicated secondary storage, based on a deduplication database. The pseudo-file-system driver also intercepts read requests and in response may restore data from deduplicated secondary storage to primary storage, also based on the deduplication database.
Abstract:
According to certain aspects, a method of creating customized bootable images for client computing devices in an information management system can include: creating a backup copy of each of a plurality of client computing devices, including a first client computing device; subsequent to receiving a request to restore the first client computing device to the state at a first time, creating a customized bootable image that is configured to directly restore the first client computing device to the state at the first time, wherein the customized bootable image includes system state specific to the first client computing device at the first time and one or more drivers associated with hardware existing at time of restore on a computing device to be rebooted; and rebooting the computing device to the state of the first client computing device at the first time from the customized bootable image.