Abstract:
An optical connector latch assembly for an optoelectronic module that can releasably engage an optical fiber connector that is received in a receptacle of the optoelectronic module. In one example embodiment, an optical connector latch arm includes a base, a shaft extending from the base, and a hook extending from the shaft. In this example embodiment, the base defines a complementary structure that is configured to engage a complementary structure of an OSA connector block. Also, the hook is configured to releasably engage an optical fiber connector.
Abstract:
An optical subassembly (“OSA”) connector block that can accommodate OSAs of a variety of different configurations. In one example embodiment, an OSA connector block includes a body. The body of the OSA connector block includes a first end defining a receptacle, and a second end defining a cavity. The receptacle is configured to receive at least a portion of an optical fiber connector. The cavity is configured to receive at least a portion of an OSA.
Abstract:
A receptacle that is configured to receive connectors of different types. If a connector of one type is received into the receptacle, the connector contacts engage one set of receptacle contacts. If a connector of another type is received into the receptacle, the connector contacts engage another set of receptacle contacts, and so forth for potentially other connector types and other contact sets. A communication system may also control which PHY circuitry communicates with the receptacle depending on which connector type is plugged into the receptacle.
Abstract:
A module housing for minimizing electromagnetic radiation leakage and a transceiver module built with this housing are presented. The housing includes a cover and a base disengagably coupled to each other, and a first and second layer of sidewalls located between the cover and the base. The two layers of sidewalls have different dimensions from each other so that a printed circuit board is enclosed in a space formed by the base, the cover, and either only the second layer of sidewall or both the first and second layer of sidewalls, depending on the thickness of the board. Another aspect of the invention is a pcb coupled to a connector and a housing for the pcb that includes an electromagnetic radiation shield between electronic components on the pcb and the connector. The shield reduces the amount of radiation reaching the connector. Also disclosed is a method of building this module.
Abstract:
A module that includes a housing and a latch assembly at least partially positioned within the housing. The latch assembly has first and second associated states, and includes an actuation sleeve having a first position that corresponds with the first state, and a second position that corresponds with the second state. The latch assembly further includes first and second latch arms operably disposed with respect to the actuation sleeve so that respective first and second cam arrangements are defined where the latch arms are responsive to motion of the actuation sleeve. The latch arms partially extend from the housing when the actuation sleeve is in the first position, and the latch arms are substantially retracted within the housing when the actuation sleeve is in the second position.
Abstract:
An electrical connector having an electrical interface assembly electrical processing circuitry, and an EMI barrier. The electrical interface assembly has a plurality of electrical contacts for interfacing with a receptacle when the electrical connector is connected to a corresponding receptacle. The electrical processing circuitry is for processing electrical signals received from at least some of the plurality of electrical contacts and/or to be sent to the plurality of electrical contacts. The EMI barrier substantially contains the electrical processing circuitry except at a number of EMI barrier openings. The largest of these EMI barrier openings is where the electrical contacts pass through the connector.
Abstract:
An electrical connector receptacle that includes receptacle-side electrical contacts, a socket, and a receptacle shield. The socket is configured such that a connector may be inserted therein allowing the electrical contacts of the connector to interface with the receptacle-side electrical contacts. The receptacle shield is placed in the back of the receptacle, and is composed of an Electro-Magnetic Interference barrier material. In one embodiment, the receptacle shield is configured to interface with an EMI barrier of the connector, and includes separate slots through which electrical connections may pass.
Abstract:
An electromagnetic radiation containment system is provided for use in connection with functional modules and an associated card cage disposed in the chassis of an electronic equipment enclosure. The electromagnetic radiation containment system includes conductive elements uniformly distributed about the perimeter of a functional module configured to be received within the card cage, and further includes grounding elements in electrical communication with the chassis so that when the functional module is positioned within a slot of the card cage, at least some of the conductive elements are in electrical communication with the grounding elements. The uniform distribution of the conductive elements on the functional module(s) enables the functional modules to be arranged above and below each other, as well as side by side, without compromising the electromagnetic radiation containment functionality that is afforded when each of the slots of the card cage is occupied.
Abstract:
An optoelectronic package is attached to a printed circuit board, in which optoelectronic package has a shaped lead configuration. The lead configuration enables the shaped leads to electrically connect with through-hole vias defined in a printed circuit board while minimizing space requirements and providing stress relief for the leads. In one embodiment, an optical subassembly is disclosed, comprising a header containing optoelectronic components, and a plurality of conductive leads that are in operable communication with the optoelectronic components. Each lead includes a straight portion extending from a surface of the header, an end portion oriented so as to be received by a through-hole via defined in a printed circuit board, and a shaped portion interposed between the straight and end portions and having at least one bend defined in a first plane. The optical subassembly further includes a clip assembly having a plurality of cavities that each receive a corresponding one of the leads.
Abstract:
An optical transceiver module characterized by reduced electromagnetic interference (“EMI”) emissions for improved operation is disclosed. The transceiver includes a housing formed by top and bottom housing portions that are joined to define a cavity. A printed circuit board (“PCB”) is positioned within the cavity and includes an edge connector extending from one housing end. The PCB also includes two holes defined near the edge connector and lined with electrically conductive material. Conductive plates located on both the top and bottom housing portions electrically connect with the conductive holes to electrically interconnect the top and bottom housing portions. Two posts on the top housing portion are received into the conductive holes to align the PCB with the housing portions. A chassis ground from one or both of the housing portions extends through the plates and holes to create a “chassis ground fence,” preventing EMI emission from within the transceiver cavity.