Abstract:
The present disclosure is directed to a system and method for in-situ (e.g. on-wing) cleaning of gas turbine engine components. The method includes injecting a dry cleaning medium into the gas turbine engine at one or more locations. The dry cleaning medium includes a plurality of abrasive microparticles. Thus, the method also includes circulating the dry cleaning medium through at least a portion of the gas turbine engine such that the abrasive microparticles abrade a surface of the one or more components so as to clean the surface.
Abstract:
Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10−4 inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
Abstract:
A cleaning system and method use an ultrasound probe, a coupling mechanism, and a controller to clean equipment of a vehicle system. The ultrasound probe enters into an engine. The ultrasound probe emits ultrasound pulses and the coupling mechanism provides an ultrasound coupling medium between the ultrasound probe and one or more components of the engine. The controller drives the ultrasound probe to deliver the ultrasound pulse through the coupling medium to a surface of the one or more components of the engine. The ultrasound probe delivers the ultrasound pulse to remove deposits from the one or more components of the engine.
Abstract:
The disclosure relates generally to core compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to core compositions and methods for casting hollow titanium-containing articles, and the hollow titanium-containing articles so molded.
Abstract:
The present disclosure relates to a titanium-containing article casting mold composition comprising calcium aluminate and an X-ray or Neutron-ray detectable element. Furthermore, present embodiments teach a method for detecting sub-surface ceramic inclusions in a titanium or titanium alloy casting by combining calcium aluminate, an element more radiographically dense than the calcium aluminate, and a liquid to form a slurry; forming a mold having the calcium aluminate and the radiographically dense element from the slurry; introducing a titanium aluminide-containing metal to the radiographically dense element-bearing mold; solidifying said titanium aluminide-containing metal to form an article in the mold; removing the solidified titanium aluminide-containing metal article from said mold; subjecting the solidified titanium aluminide-containing article to radiographic inspection to provide a radiograph; and examining said radiograph for the presence of the radiographically dense element on or in the article.
Abstract:
An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.
Abstract:
A cleaning solution for a turbine engine includes water; a first organic acidic component that comprises citric acid; a second organic acidic component that comprises glycolic acid; isopropylamine sulphonate; alcohol ethoxylate; triethanol amine; and sodium lauriminodipropionate. The cleaning solution has a pH value between about 2.5 and about 7.0.
Abstract:
A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
Abstract:
An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.
Abstract:
A method of inspecting a component includes storing at least one inspection image file in a memory and receiving a search request associated with the at least one inspection image file. The method also includes accessing a database including a plurality of image files, comparing the hash code of the at least one inspection image file to the hash code of each image file of the plurality of image files, and identifying a first subset of image files based on the hash code comparison. The method also includes comparing the feature data of the at least one inspection image file to the feature data of each image file of the first subset of image files and classifying a second subset of image files as relevant based on the feature data comparison. The method further includes generating search results based on the second subset of image files.