Abstract:
A method for fabricating a ceramic material includes providing a mobilized filler material capable of infiltrating a porous ceramic matrix composite. The mobilized filler material includes at least one of a ceramic material and a free metal. The mobilized filler material is infiltrated into pores of the porous ceramic matrix composite. The mobilized filler material is then immobilized within the pores of the porous ceramic matrix composite.
Abstract:
A composite article includes a substrate and a protective coating on at least a portion of the substrate. The protective coating includes reinforcement particles dispersed within an elastomeric matrix that is modified with a silicon-containing modifier selected from polysilsesquioxane, polyhedral oligomeric silicate, polyhedral oligomeric silsesquioxane (POSS), and combinations thereof. The reinforcement particles are selected from carbon, nickel metal, and combinations thereof. The protective coating is multi-layered and includes a distinct first layer and a distinct second layer that is contiguous with the distinct first layer such that each of the distinct first layer and the distinct second layer have an exposed outer surface.
Abstract:
A feedstock for an additive manufacturing process includes a pre-ceramic polymer intermixed with a base material. A method of additive manufacturing includes melting and pyrolizing a feedstock containing metal and a pre-ceramic polymer. An article of manufacture includes an additive manufacturing component including a pyrolized feedstock.
Abstract:
A method of preparing a composite preform includes applying a tacky preceramic-polymer-based adhesive on a first fiber array arranging a second fiber array on the first fiber array, the adhesive holding the first and second fiber arrays together. A composite component is also disclosed.
Abstract:
An article includes a substrate and a coating on the substrate. The coating includes a compound of aluminum, boron and nitrogen in a continuous chemically bonded network having Al—N bonds and B—N bonds. Also disclosed is an article wherein the substrate is a plurality of fibers and the coating is a conformed coating of a compound of aluminum, boron and nitrogen having Al—N bonds and B—N bonds. The fibers are disposed in a matrix. Also disclosed is a method of protecting an article from environmental conditions. The method includes protecting a substrate that is susceptible to environmental chemical degradation using a coating that includes a compound of aluminum, boron and nitrogen having Al—N bonds and B—N bonds.
Abstract:
An instrumented article includes a ceramic-based substrate and at least one conformal electronic device deposited on a surface of the ceramic-based substrate. A compliant layer is located between the ceramic-based substrate and the one or more conformal electronic devices. The compliant layer has a thermal expansion that is intermediate of the thermal expansions of, respectively, the ceramic-based substrate and the one or more conformal electronic devices.
Abstract:
The present disclosure relates to systems, methods and resins for additive manufacturing. In one embodiment, a method for additive manufacturing of a ceramic structure includes providing a resin including a preceramic polymer and inorganic ceramic filler particles dispersed in the preceramic polymer. The preceramic polymer is configured to convert to a ceramic phase. The method includes functionalizing inorganic ceramic filler particles with a reactive group and applying an energy source to the resin to create at least one layer of the ceramic phase from the resin.
Abstract:
An apparatus system and method for an electronic component made with additive manufacturing processes and a foil substrate is provided. The electronic component may include one or more foil substrates and one or more elements. The elements may be produced by an additive manufacturing process. Moreover, the elements may be produced in the same plane or out of plain with one or more foil substrates. The elements may also be various structures, including, for example, connectors, electrical components (e.g., a resistor, a capacitor, a switch, and/or the like), and/or any other suitable electrical elements and/or structures.
Abstract:
A method of creating a component comprises forming a substrate and depositing a template material within the substrate, such that there are a plurality of template member. The component is heated to a temperature above a melting point of the template material, such that the template material wicks into a porosity of the substrate and forms a component with voids. An average hydraulic diameter of the voids is less than 1 millimeter. A component formed by the method, and the component itself are also disclosed.
Abstract:
A ceramic component includes a porous structure that has fibers and a coating on the fibers. A ceramic material is within pores of the porous structure. A glass or glass/ceramic material is within pores of the porous structure, and one of the ceramic material or the glass or glass/ceramic material is within internal residual porosity of the other of the ceramic material or the glass or glass/ceramic material.