Abstract:
Apparatus and methods for training and operating of robotic appliances. Robotic appliance may be operable to clean user premises. The user may train the appliance to perform cleaning operations in constrained areas. The appliance may be configured to clean other area of the premises automatically. The appliance may perform premises exploration and/or determine map of the premises. The appliance may be provided priority information associated with areas of the premises. The appliance may perform cleaning operations in order of the priority. Robotic vacuum cleaner appliance may be configured for safe cable operation wherein the controller may determine one or more potential obstructions (e.g., a cable) along operating trajectory. Upon approaching the cable, the controller may temporarily disable brushing mechanism in order to prevent cable damage.
Abstract:
A robot cleaner includes a case, a suction device provided in the case, a suction nozzle for sucking dust from a floor by driving of the suction device, a dust collection device for collecting foreign substances contained in the air sucked via the suction nozzle, a driving unit for allowing the case to drive automatically, a controller for controlling the driving of the suction device and the driving unit, and for generating cleaning history information comprising map information on a cleaning area and moving path information, a memory unit for storing the cleaning history information; and a wireless communication module provided in the case to transmit the cleaning history information to the external terminal, when the external terminal asks the cleaning history information.
Abstract:
A navigation control system for an autonomous vehicle comprises a transmitter and an autonomous vehicle. The transmitter comprises an emitter for emitting at least one signal, a power source for powering the emitter, a device for capturing wireless energy to charge the power source, and a printed circuit board for converting the captured wireless energy to a form for charging the power source. The autonomous vehicle operates within a working area and comprises a receiver for detecting the at least one signal emitted by the emitter, and a processor for determining a relative location of the autonomous vehicle within the working area based on the signal emitted by the emitter.
Abstract:
An autonomous floor-cleaning robot comprising a housing infrastructure including a chassis, a power subsystem; for providing the energy to power the autonomous floor-cleaning robot, a motive subsystem operative to propel the autonomous floor-cleaning robot for cleaning operations, a command and control subsystem operative to control the autonomous floor-cleaning robot to effect cleaning operations, and a self-adjusting cleaning head subsystem that includes a deck mounted in pivotal combination with the chassis, a brush assembly mounted in combination with the deck and powered by the motive subsystem to sweep up particulates during cleaning operations, a vacuum assembly disposed in combination with the deck and powered by the motive subsystem to ingest particulates during cleaning operations, and a deck adjusting subassembly mounted in combination with the motive subsystem for the brush assembly, the deck, and the chassis that is automatically operative in response to an increase in brush torque in said brush assembly to pivot the deck with respect to said chassis. The autonomous floor-cleaning robot also includes a side brush assembly mounted in combination with the chassis and powered by the motive subsystem to entrain particulates outside the periphery of the housing infrastructure and to direct such particulates towards the self-adjusting cleaning head subsystem.
Abstract:
An autonomous floor cleaning robot includes a body, a controller supported by the body, a drive supporting the body to maneuver the robot across a floor surface in response to commands from the controller, and a pad holder attached to an underside of the body to hold a removable cleaning pad during operation of the robot. The pad includes a mounting plate and a mounting surface. The mounting plate is attached to the mounting surface. The robot includes a pad sensor to sense a feature on the pad and to generate a signal based on the feature, which is defined in part by a cutout on the card backing. The mounting plate enables the pad sensor to detect the feature. The controller is responsive to the signal to perform operations including selecting a cleaning mode based on the signal, and controlling the robot according to a selected cleaning mode.
Abstract:
A piezoelectric debris sensor and associated signal processor responsive to debris strikes enable an autonomous or non-autonomous cleaning device to detect the presence of debris and in response, to select a behavioral mode, operational condition or pattern of movement, such as spot coverage or the like. Multiple sensor channels (e.g., left and right) can be used to enable the detection or generation of differential left/right debris signals and thereby enable an autonomous device to steer in the direction of debris.
Abstract:
A cleaning robot includes a main body; a plurality of pad assemblies mounted on the bottom of the main body for doing cleaning; a drive assembly for applying drive power for each of the plurality of pad assemblies; and a detection unit for detecting an obstacle. The drive assembly adjusts slopes of the plurality of pad assemblies individually based on the height of the obstacle.
Abstract:
The invention relates to a method for cleaning a floor surface with a floor cleaning device, in which method, during the cleaning movement of the floor cleaning device over the floor surface, a first recording of a floor surface portion before the cleaning is created with an optical recording unit, the floor cleaning device is moved with at least one cleaning unit over the floor surface portion, which is cleaned, a second recording of the floor surface portion after the cleaning is created with an optical recording unit and the recordings are compared with one another in order to check the cleaning result. The invention further relates to a floor cleaning device for carrying out the method.
Abstract:
A robot cleaner is provided. The robot cleaner includes a communication unit configured to communicate with the robot cleaner using a near field wireless communication (NFC) and a processor configured to detect a state of the robot cleaner among a plurality of predefined states. The processor is also configured to, in response to NFC tagging being performed with the mobile terminal, control the communication unit to transmit information corresponding to the detected state to the mobile terminal.
Abstract:
A dust detection apparatus includes a dust measuring unit that measures an amount of dust in air, a controller that determines a moving direction of the dust detection apparatus based on the measured amount of dust or a predetermined dust accumulation position candidate, a flight controller that controls a flight of the dust detection apparatus to the determined moving direction, and a communication unit that sends, to a server, location information of a dust accumulation position determined based on the measured amount of dust and the amount of dust measured by the dust measuring unit at the dust accumulation position.