Abstract:
A fluid holding apparatus including a vessel capable of holding a load including a fluid and a sensor coupled to the vessel. The sensor is operable to sense the load held by the vessel and to generate a signal having a relation to the load. The fluid holding apparatus further includes a controller electrically coupled to the sensor. The controller is operable to initiate a control signal in response to a variation in the load.
Abstract:
A device and method are provided for massaging a body area of a user, such as a sphincter muscle of the user. The device includes a basic plate, an upper plate supported the basic plate, and a massaging member mounted on the upper plate. The massaging member includes an opening disposed in the massaging member, a massaging plate disposed within the opening for providing space to move the massaging plate within the opening in a reciprocating manner, and a mechanism for movably engaging the massaging plate with the upper plate. When the massaging plate is moved in the reciprocating manner after the user sits on a portion of the massaging plate, the body area of the user is massaged by the massaging plate.
Abstract:
A resuscitation device for automatic compression of a victim's chest using a compression belt which exerts force evenly over the entire thoracic cavity. The belt is constricted and relaxed through a motorized spool assembly that repeatedly tightens the belt and relaxes the belt to provide repeated and rapid chest compression.
Abstract:
A control system for bathers includes an electronic controller which controls operation of an electric heater assembly connected in a water flow path for heating water. The heater assembly includes a heater housing and electric heater element. A solid state water temperature sensor apparatus provides electrical temperature signals to the controller indicative of water temperature at separated first and second locations on or within the heater housing. The presence of water in the heater housing is detected electronically, by turning on the heater, and monitoring the temperature sensors for unusual temperature rises or other faults for a period of time thereafter. A solid state water presence sensor apparatus can also be used to determine the presence of water within the heater housing, providing electrical water presence signals to the controller indicative of the presence or absence of a body of water within the heater housing. An independent circuit apparatus is connected to the water temperature sensor apparatus and to a power relay, automatically causing high voltage power to be disconnected from the heater assembly when the water temperature exceeds a predetermined temperature. The independent circuit apparatus requiring a manual reset once the water temperature has dropped below a predetermined level to allow the high voltage power to be reconnected to the heater assembly. The system includes ground continuity detection, ground current detection and ground fault detection circuits.
Abstract:
A fluid holding apparatus including a vessel capable of holding a load including a fluid and a sensor coupled to the vessel. The sensor is operable to sense the load held by the vessel and to generate a signal having a relation to the load. The fluid holding apparatus further includes a controller electrically coupled to the sensor. The controller is operable to initiate a control signal in response to a variation in the load.
Abstract:
A control system for a pool and spa. Main line voltage is provided through a single line voltage service and a single ground fault circuit interrupter circuit, facilitating a ground fault test and simplifying installation. The control system controls the pool and spa equipment, with a circuit board assembly including individual fuse protection devices and switching circuits. A test algorithm is included, wherein the control system is disabled from normal operation if the GFCI test fails. The pool operator manually enters a water fill command, and the controller system automatically opens the fill valve for a predetermined time interval, and then automatically closes the valve. An emergency disconnect switch is mounted near the bathing area, connected by low voltage wiring to the controller system cabinet. The controller system senses the emergency switch closure and disconnects line voltage to the line voltage loads. The emergency switch closure also remotely induces a ground fault, tripping the GFCI. A sensing circuit allows the controller system to sense the presence of the emergency switch system, and issues a warning and prevents normal operation of the pool and spa system if not connected. A gas pressure sensor monitors the natural gas line, and the heater is disabled and a warning given under low pressure conditions. Abnormal filter backpressure triggers a warning when the filter needs service. A temperature sensor has parallel sensing elements in a common housing to provide separate sensing circuits.
Abstract:
A control system for bathers includes an electronic controller which controls operation of an electric heater assembly connected in a water flow path for heating water. The heater assembly includes a heater housing and electric heater element. A solid state water temperature sensor apparatus provides electrical temperature signals to the controller indicative of water temperature at separated first and second locations on or within the heater housing. The presence of water in the heater housing is detected electronically, by turning on the heater, and monitoring the temperature sensors for unusual temperature rises or other faults for a period of time thereafter. A solid state water presence sensor apparatus can also be used to determine the presence of water within the heater housing, providing electrical water presence signals to the controller indicative of the presence or absence of a body of water within the heater housing. An independent circuit apparatus is connected to the water temperature sensor apparatus and to a power relay, automatically causing high voltage power to be disconnected from the heater assembly when the water temperature exceeds a predetermined temperature. The independent circuit apparatus requiring a manual reset once the water temperature has dropped below a predetermined level to allow the high voltage power to be reconnected to the heater assembly. The system includes ground continuity detection, ground current detection and ground fault detection circuits.
Abstract:
A control system for bathers with ground continuity and ground fault detection includes an electronic controller which controls operation of electrically powered devices such as an electric heater assembly connected in a water flow path for heating water. A solid state water temperature sensor apparatus provides electrical temperature signals to the controller indicative of water temperature at separated first and second locations on or within the heater housing. A solid state water presence sensor apparatus determines the presence of water within the heater housing, providing electrical water presence signals to the controller indicative of the presence or absence of a body of water within the heater housing. The system includes ground continuity detection, ground current detection and ground fault detection circuits. The ground continuity detector detects continuity of the electrical ground and provides an electrical detector signal to the controller indicative of a ground continuity status. The ground current detector detects a current flow in the electrical ground line and provides a detector signal to the controller indicative of the current flow detection. The ground fault detection circuitry detects a current imbalance in high power conductors, and disconnects high power outputs from the respective spa devices when a current imbalance is detected, without disconnecting power from the controller.
Abstract:
An overheating protection system for a spa and the spa's associated equipment. Elements include: a heating element for heating the spa's water, an infrared sensor for detecting the amount of infrared radiation emitted by the heating element, a heating element deactivation device electrically connected to the heating element and the infrared sensor, wherein the heating element deactivation device is for deactivating the heating element. In a preferred embodiment, the heating element deactivation device is an electric circuit comprising a comparator circuit and a control circuit.
Abstract:
A spa system which employs a removable drain cover. Removal of the drain cover will cause a proximity switch to turn off the circulation pump in the spa. In a preferred embodiment, the removable drain cover has a magnet attached to it and a magnetically actuable reed switch is attached to the drain body in proximity to the drain cover. Removal of the drain cover with the magnet attached will cause the reed switch to change state which opens a circuit controlling the operation of the spa pump thereby shutting down the spa circulation system. As a result, the spa circulation system cannot be operated without the drain cover in place. This reduces the likelihood of unwanted objects being drawn into the drain. Furthermore, should the spa user's hair become entangled in the drain cover or the drain pipe, the spa pump may be turned off by simply removing the drain cover thereby permitting the entangled user to be released.