Abstract:
A multi-chamber reactor (1) comprises an outer chamber (2) and at least one inner chamber (3), wherein the at least one inner chamber (3) is formed by a reactor/liner (6), which is closed by a closure (7), in particular a septum or a disk that can be penetrated with a needle, and the outer chamber is an autoclave, wherein the autoclave is composed of an autoclave body (4) and an autoclave cover (5), wherein the autoclave cover (5) has at least one first opening (8) for a needle (9), and preferably a second opening (10), which opens into the outer chamber. Said multi-chamber reactor (1) is suited for carrying out reactions with positive or negative pressure and under complete exclusion of air and/or moisture.
Abstract:
The present invention includes a removable microchannel unit including an inlet orifice and an outlet orifice in fluid communication with a plurality of microchannels distributed throughout the removable microchannel unit, and a pressurized vessel adapted have the removable microchannel unit mounted thereto, the pressurized vessel adapted to contain a pressurized fluid exerting a positive gauge pressure upon at least a portion of the exterior of the removable microchannel unit. The invention also includes a microchannel unit assembly comprising a microchannel unit operation carried out within a pressurized vessel, where pressurized vessel includes a pressurized fluid exerting a positive gauge pressure upon an exterior of the microchannel unit operation, and where the microchannel unit operation includes an outlet orifice in fluid communication with an interior of the pressurized vessel.
Abstract:
A reactor for treating a material in a medium. It includes a body (2) in which is defined a reaction area (10) capable of containing a reaction medium, at least one inlet for introducing the reaction medium into the reaction area, one outlet for discharging effluents out of the reaction area. A protective casing (8) positioned inside the body (2) delimits the reaction area (10). It is spaced apart from the body in order to delimit a confinement area (12) isolating the reaction area of the body. The reaction area and the confinement area are sealably isolated from each other.
Abstract:
An apparatus and method for processing materials in supercritical fluids is disclosed. The apparatus includes a capsule configured to contain a supercritical fluid, a high strength enclosure disposed about the capsule and a sensor configured to sense pressure difference between an interior and an exterior of the capsule. The apparatus also includes a pressure control device configured to adjust pressure difference of the capsule in response to the pressure difference sensed by the sensor. The apparatus further includes at least one dividing structure disposed within the capsule that divides the capsule into a seed growing chamber and a nutrient chamber.
Abstract:
The present invention includes a removable microchannel unit including an inlet orifice and an outlet orifice in fluid communication with a plurality of microchannels distributed throughout the removable microchannel unit, and a pressurized vessel adapted have the removable microchannel unit mounted thereto, the pressurized vessel adapted to contain a pressurized fluid exerting a positive gauge pressure upon at least a portion of the exterior of the removable microchannel unit. The invention also includes a microchannel unit assembly comprising a microchannel unit operation carried out within a pressurized vessel, where pressurized vessel includes a pressurized fluid exerting a positive gauge pressure upon an exterior of the microchannel unit operation, and where the microchannel unit operation includes an outlet orifice in fluid communication with an interior of the pressurized vessel.
Abstract:
A reactor for fluorinating an organic compound comprising (a) an outer vessel; (b) a reactor vessel being disposed within said outer vessel to define an annular space, said reactor vessel at least partially comprising a fluoropolymer, said annular space being adapted to receive a fluid; (c) at least one pathway for introducing said heating fluid into said annular space; (d) at least one pathway for inputing reaction materials into said reactor vessel; and (e) at least one pathway for ouputing a product stream from said reactor vessel.
Abstract:
A process unit comprising: (a) a first microchannel module comprising: (i) a first unit operation including microchannels, in which at least a portion of a unit operation takes place, adapted to be in fluid communication with a first inlet stream and a first outlet stream, and (ii) a second unit operation including microchannels adapted to be in thermal communication with the first unit operation, the second unit operation adapted to be in fluid communication with a second inlet stream and a second outlet stream; and (b) a pressurized vessel at least partially containing the first microchannel module adapted to be concurrently occupied by a compressive medium in thermal communication with the first microchannel module.
Abstract:
A processing vessel in which a temperature control element defining a helical flow passage, disposed on an outer surface of an inner barrel within the processing vessel. The barrel contains a processing liquid and a heating or cooling temperature control medium is caused to flow through the flow passage. The inner barrel and temperature control element are disposed in a vessel body to define a chamber between the temperature control element and an inner surface of the vessel body. The chamber defined between the vessel body and the temperature control element is a closed chamber. Preferably, a system for generally equalizing the pressures in the inner barrel and the closed chamber is provided. The temperature control element can be assembled in the vessel body after being manufactured outside the vessel body. Therefore, the processing vessel can be manufactured with improved efficiency and can be serviced by ordinary in-vessel maintenance operations.
Abstract:
A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.
Abstract:
The plasma treatment apparatus includes a vacuum-tight first container for receiving the workpieces to be treated, and a pressure-tight second container enclosing the first container. The intermediate space between the two containers can be evacuated by a suction device. If a high-temperature process is performed within the inner container, the intermediate space is evacuated, whereby the inner container is relieved of pressure while the outer container, taking up the pressure, is maintained at a low temperature. With low operating temperatures, a gas is kept in convective flow within the intermediate space so that heat is transmitted from the inner container to the outer container. In this case, pressure is taken up by the inner container.