Abstract:
In a method for recovering a copper sulfide concentrate by froth flotation from an ore containing an iron sulfide, wet grinding of the ore with grinding media made of high chromium cast iron alloy having a chromium content of from 10 to 35% by weight is combined with an addition of hydrogen peroxide to the conditioned mineral pulp before or during flotation in order to improve concentrate grade and recovery of copper sulfides.
Abstract:
This disclosure relates generally to selective flocculation, and more particularly to portable test-device for performing selective flocculation experiments in continuous mode. The test-device includes a slurry inflow system, a flocculant tank, a static mixer, a control pumping system, and a thickener system. The static mixer is connected to the slurry inflow system and the flocculant tank, to receive and mix flocculant solution and slurry and cause formation of floc. The control pumping system connects the flocculant tank and the slurry inflow system to the static mixer to control the control parameters responsible for pumping the slurry and flocculant solution in the continuous mode in the static mixer. The thickener system comprises a thickener tank to receive treated slurry and the floc from the static mixer, separately collect tailings and the floc from the thickening tank. The components of the portable test-device are removably connected to each other.
Abstract:
Disclosed herein are methods and systems for recovery of ancylite, a rare earth mineral comprising strontium carbonate, from rare earth ore. In many embodiments, the disclosed methods and systems provide for recovery of greater than 50% of the ancylite from an ancylite containing ore. In many embodiments, the ore is subjected to flotation in the presence of an acid, for example a hydroxamic acid, such as octanohydroxamic acid. The ore may also be subjected to magnetic separation, for example wet high intensity magnetic separation.
Abstract:
Processing of mineral material containing precious metal with one or more sulfide minerals and non-sulfide gangue minerals including acid-consuming carbonate may include preparation of a sulfide concentrate by flotation with the flotation or conditioning prior to flotation using a gas comprising carbon dioxide. Flotation may be at an acidic pH without prior decomposition of the acid-consuming carbonate and may be without addition of acid for pH adjustment.
Abstract:
In a method for recovering a copper sulfide concentrate by froth flotation from an ore containing an iron sulfide, hydrogen peroxide is added to the conditioned mineral pulp before or during flotation, a concentration of dissolved oxygen is determined in the mineral pulp after addition of hydrogen peroxide and the amount of hydrogen peroxide added is adjusted to maintain a concentration of dissolved oxygen of from 1 to 5 times a predetermined target concentration, in order to adjust the amount of hydrogen peroxide to changes in ore composition.
Abstract:
In a method for recovering a copper sulfide concentrate by froth flotation from an ore containing an iron sulfide, hydrogen peroxide is added to the conditioned mineral pulp before or during flotation in an amount effective to lower the redox potential of the conditioned mineral pulp in order to improve concentrate grade and recovery of copper sulfides.
Abstract:
Processing of mineral material containing precious metal with one or more sulfide minerals and non-sulfide gangue minerals including acid-consuming carbonate may include preparation of a sulfide concentrate by flotation with the flotation or conditioning prior to flotation using a gas comprising carbon dioxide. Flotation may be at an acidic pH without prior decomposition of the acid-consuming carbonate and may be without addition of acid for pH adjustment.
Abstract:
Methods of enhancing recovery of value sulfide or precious minerals from an ore containing Mg-silicate, slime forming minerals, and/or clay by crushing the ore, grinding the ore, and subjecting the ground ore to a flotation process, in conjunction with the addition of at least one monovalent ion modifier enhancing agent and/or froth phase modifier agent to the ore, are provided herein.
Abstract:
A method of producing enhanced coal combustion ash for use in pozzolanic applications or cement manufacture, in which the enhanced combustion ash has lower mercury content. A slurry is formed of the combustion ash and water and is subjected to froth flotation to form a mercury-enriched ash slurry and a mercury-depleted ash slurry. The product mercury-depleted ash slurry is isolated and may optionally be dried. The combustion ash may be pulverized prior to being used to form the slurry, reducing its mean particle size. The mercury-depleted combustion ash product has reduced levels of mercury and ammonia, and reduced particle size.
Abstract:
The present invention generally relates to methods for purifying and/or concentrating compounds from or in solutions and/or mixtures. In one embodiment, the present invention relates to a method for purifying and/or concentrating a compound from a solution or mixture. In another embodiment, the present invention relates to a method for purifying/concentrating a compound from a solution or mixture that utilizes, in whole or part, foam purification and/or concentration. In still another embodiment, the present invention can be used to separate, concentrate and/or purify any material, including biological products and/or biomaterials, that can be selectively bound to a binding agent, thereby yielding a complex that will readily partition onto bubble surfaces in a foam.