Abstract:
An electrostatic atomization device that electrostatically atomizes condensed water and emits atomized water. The electrostatic atomization device includes a discharge electrode. A water supplier unit includes a cooling unit coupled to the discharge electrode to cool the discharge electrode and a heat radiation unit coupled to the cooling unit to emit heat when the cooling unit performs cooling. The cooling unit cools air and produces condensed water on the discharge electrode. A controller includes electronic components mounted on a circuit board. A casing accommodates the discharge electrode, the water supplier unit, and the controller. First electronic components each of which temperature is increased by a predetermined value or greater are arranged in a heat radiation unit side region of the circuit board.
Abstract:
An electrostatic atomization device having a simple structure and allowing for reduction in size. The electrostatic atomization device has an atomization electrode including a P type Peltier element and an N type Peltier element joined with the P type Peltier element. The atomization electrode is cuspate so as to form a projection with a joined portion of the P type Peltier element and the N type Peltier element. High voltage is applied to the P and N type Peltier elements so that discharging occurs at a distal portion of the atomization electrode, current flows to the P and N type Peltier elements to produce a cooling effect at the joined portion, and condensed water generated by the cooling effect is atomized by the discharging to generate charged fine water droplets.
Abstract:
Disclosed is a discharge device (20) which comprises a power supply unit (22) that supplies a first voltage, a piezoelectric transducer (24) that increases the first voltage to a second voltage by means of vibrations, and a first electrode (26) for producing a discharge product (P) by performing a discharge upon application of the second voltage. The first electrode (26) and the piezoelectric transducer (24) are electrically connected with each other via a vibration damping unit (30). In other words, the first electrode (26) and the piezoelectric transducer (24) are arranged to be out of contact with each other.
Abstract:
It is an object to provide an electrostatic atomizing apparatus which is simply structured, is easy to assemble, is low in cost, has clogging resistance against foreign matter, can be used for a long time, and is highly reliable, or a home electrical appliance such as a refrigerator, air conditioner, etc. including the electrostatic atomizing apparatus. A discharge electrode formed of foam metal, whereto water that attaches to a surface is supplied by capillary action, a counter electrode provided so as to be opposed to the discharge electrode, and a water supply means that is provided directly above the discharge electrode via a predetermined clearance, supplying water to the discharge electrode or the electrode holding part, are included.
Abstract:
Powder coating apparatus is equipped with a shutter for opening and closing the space between an object to be coated and a screen electrode. First, a powder is supplied onto the screen electrode from a hopper while the shutter is closed. Next, a brush is slidingly rubbed against the surface of a powder layer while the shutter is closed. The powder is thereby uniformed on the screen electrode without being transferred to the object. Subsequently, a high voltage is applied between the screen electrode and a transfer electrode to form a static electric field, and the shutter is opened. Then, the brush is slidingly rubbed against the powder layer again, and the powder on the screen electrode is coated on the object.
Abstract:
An electrostatic atomizer includes an atomizing electrode to which a high voltage is applied to atomize water held on the atomizing electrode so as to generate charged water particles; and a cooling unit for producing water, to be supplied to the atomizing electrode, through condensation. The cooling unit is made using a cooling part of a cooling cycle which circulates a coolant between a heat-radiating part and the cooling part. A coolant-circulating equipment incorporating the electrostatic atomizer therein includes a condensation space in which the atomizing electrode is disposed to produce condensate water; a cooling space in which the cooling section of the cooling cycle is disposed to produce cold air; and a partition wall for separating the condensation space from the cooling space.
Abstract:
An electrostatic atomizer equipped with an electrostatic atomization pole having superior migration-proof. The atomizer comprises the electrostatic atomization pole, a liquid supply mechanism that supplies the pole with liquid, and a power supply that supplies the pole with high voltage to electrostatically atomize the liquid held on the pole. A coating is formed on the surface of the pole, and the coating is formed of simple metal or alloy, which displays resistance to migration.
Abstract:
An electrostatically atomizing device comprises an emitter electrode, an opposed electrode, cooling means for condensing water on the emitter electrode, and a high voltage source; and high voltage is applied to the condensed water so that minute water particles are discharged from a discharge end at a tip of the emitter electrode. The device comprises a controller for causing the charged minute water particles to be discharged stably. The controller has an initial control mode and a normal control mode. In the initial mode, the cooling means is controlled so as to cool the emitter electrode at a predetermined cooling rate. Once discharge current reaches into a predetermined target discharge current range, the cooling means is controlled by feedback control, on the basis of the value of the discharge current, in such a manner that the discharge current is kept within the target discharge current range.
Abstract:
An electrostatically atomizing device capable of instantly giving an electrostatically atomizing effect without requiring a water tank. The electrostatically atomizing device includes an emitter electrode, an opposed electrode opposed to the emitter electrode, a water feeder configured to give water on the emitter electrode, and a high voltage source configured to apply a high voltage across said emitter electrode and said opposed electrode to electrostatically charge the water on the emitter electrode for spraying charged minute water particles from a discharge end of the emitter electrode. The water feeder is configured to condense the water on the emitter electrode from within the surrounding air, enabling to supply the water on the emitter electrode in a short time without relying upon an additional water tank. Thus, an atomization of the charged minute water particles can be obtained immediately upon use of the device.
Abstract:
The electrostatic atomizing device includes a discharge electrode, an opposed electrode, and a voltage application device. The voltage application device is configured to apply a voltage between the discharge electrode and the opposed electrode so as to atomizing a liquid supplied to the discharge electrode. The electrostatic atomizing device further includes a reduced water provision device configured to supply reduced water as the above liquid to the discharge electrode.