Abstract:
An electrostatic atomizer, for use in a motor vehicle, includes a discharge electrode, a water supply unit for cooling the discharge electrode to generate water condensed on the discharge electrode, and a high voltage applying unit for applying a high voltage to the water on the discharge electrode to electrostatically atomize the water. The electrostatic atomizer is arranged in a ceiling of the motor vehicle. The electrostatic atomizer further includes an ejection portion provided in the ceiling of the motor vehicle for ejecting electrically-charged water particles generated by electrostatic atomization and an ejection direction changing unit provided in the ejection portion for changing an ejection direction of the electrically-charged water particles.
Abstract:
A switching power supply includes an active device for pulling out a part of a control signal from a control terminal of the switching device in an RCC, and a control signal generation circuit that applies adjustment voltage as ON/OFF time control voltage to a control terminal of the active device. The active device pulls out the control signal so as to decrease or increase an OFF time of the switching device while fixing the ON time of the switching device when the adjustment voltage is decreased or increased in the active region of the active device, respectively. An element of a timing circuit in the RCC pulls out the control signal so as to increase or decrease an ON time of the switching device while fixing the OFF time of the switching device when the adjustment voltage is decreased or increased in the cut-off region of the active device, respectively.
Abstract:
An electrostatic atomizer including a discharge electrode, a counter electrode, a cooling source, a high voltage power supply and a voltage detector. The cooling source cools the discharge electrode to form thereon dew as water. The power supply applies high voltage for discharge across the electrodes. The detector detects voltage between the electrodes. The power supply includes a control device and a voltage stabilizing device that are opposite to each other in temperature characteristic. The control device operates to pick up the voltage detected with the detector via the voltage stabilizing device, and to adjust the high voltage applied across the electrodes through feedback control so that the voltage corresponds to specified discharge voltage.
Abstract:
An air conditioning system with an electrostatically atomizing function includes an electrostatically atomizing unit and a ventilation duct which flows conditioned air. The electrostatically atomizing unit generates a mist of charged minute water particles. The electrostatically atomizing unit is provided with a discharge port which locates adjacent to an air outlet of the ventilation duct. The mist of the charged minute water particles flows into an airflow which is sent from the ventilation duct. The mist of the charged minute water particles effectively spreads to the space by the air flow without dissipating inside the ventilation duct.
Abstract:
A switching power supply includes an active device for pulling out a part of a control signal from a control terminal of the switching device in an RCC, and a control signal generation circuit that applies adjustment voltage as ON/OFF time control voltage to a control terminal of the active device. The active device pulls out the control signal so as to decrease or increase an OFF time of the switching device while fixing the ON time of the switching device when the adjustment voltage is decreased or increased in the active region of the active device, respectively. An element of a timing circuit in the RCC pulls out the control signal so as to increase or decrease an ON time of the switching device while fixing the OFF time of the switching device when the adjustment voltage is decreased or increased in the cut-off region of the active device, respectively.
Abstract:
An electrostatically atomizing device has a housing and an electrostatically atomizing unit accommodated within the housing. The electrostatically atomizing unit includes an atomizing barrel and an emitter electrode disposed within the atomizing barrel and is configured to atomize water supplied to the emitter electrode at a tip of the emitter electrode and generate mist of charged minute water particles. Formed within the housing is an air pressure chamber which surrounds the atomizing barrel. The atomizing barrel is formed in its peripheral wall with a plurality of air inlets which are arranged circumferentially around the atomizing barrel to introduce pressurized air from the air pressure chamber for carrying the mist on the pressurized air introduced into the atomizing barrel from the plural air inlets and discharging the mist outwardly of the housing.
Abstract:
The present invention provides an electrostatic atomizing apparatus for a vehicle that is mounted in a vehicle and purifies a vehicle interior, having: an electrostatic atomizer comprising an electrode that generates an electric field when high voltage is applied thereto in a state where water is being supplied, to thereby turn the water into charged corpuscle water in the form of mist which is charged in either plus or minus, a water supply unit that supplies water to the electrode, and an emission outlet that emits the charged corpuscle water into the vehicle interior; and a potential holding unit that is installed in an on-vehicle component which a passenger contacts, and is used for holding a potential of the on-vehicle component at a potential at which the charged corpuscle water is continuously attracted to and absorbed by the passenger in contact with the on-vehicle component.
Abstract:
An electrostatically atomizing device includes a housing and an electrostatically atomizing unit disposed within the housing. The atomizing unit includes an emitter electrode and an heat exchanger. The heat exchanger cools the emitter electrode to develop condensed water. A high voltage is applied to the emitter electrode in order to electrostatically atomizing the condensed water and generate a mist of charged minute water particles. The housing accommodates a fan generating an air flow accelerating a heat radiation of the heat exchanger, and a high voltage source generating the high voltage applied to the emitter electrode. The heat exchanger has its heat radiator section exposed to a flow passage of the air flow. The atomizing unit is formed with an air inlet for introducing the air flow which carries the mist of the charged minute water particles and release the mist. The atomizing unit and the high voltage source are arranged on opposite sides of the flow passage. A first air intake port for feeding the forced air flow from the fan and a second air intake port for feeding the air flow into the high voltage source are positioned upstream of a second air intake port which introduce the forced air flow into the flow passage.
Abstract:
An emitter electrode is cooled by a cooler to generate condensed water which is charged by a high voltage applied between the emitter electrode and an opposed electrode and is discharged as a mist of charged minute water particles. A controller is provided to vary a temperature drop to a predetermined minimum temperature in dependence of an environmental temperature detected by a temperature sensor. The temperature drop is made variable in proportion to the environmental temperature. Accordingly, a sufficient amount of water can be condensed on the emitter electrode simply by controlling the cooling of the emitter electrode without relying upon an environmental humidity.
Abstract:
This heating blower has a housing 1, a fan 2, a heater 3, and an electrostatic atomizing device 5. The electrostatic atomizing device 5 is provided in the housing 1 and discharges nanometer-size ion mist to the outside. The electrostatic atomizing device 5 comprises a discharging electrode 50, an opposed electrode 52 disposed opposite the discharging electrode 50, a cooling part 53 which cools the discharging electrode 50 to generate moisture from ambient air near the discharging electrode, and a high voltage applying part 55 which applies a high voltage between said discharging electrode and the opposed electrode to atomize water generated near the discharging electrode. Therefore, this heating blower can discharge nanometer-size ion mist to the outside without replenishment of water.