Abstract:
A vehicular battery system includes an oxygen reservoir having a first outlet and a first inlet, a multistage compressor supported by the vehicle and having a second inlet and a second outlet, the second outlet operably connected to the first inlet, a cooling system operably connected to the multistage compressor and configured to provide a coolant to the multistage compressor to cool a compressed fluid within the multistage compressor, and a vehicular battery system stack including at least one negative electrode including a form of lithium, the vehicular battery system stack having a third inlet removably operably connected to the first outlet, and a third outlet operably connected to the second inlet.
Abstract:
A vehicle includes a battery, a secondary coil, and a controller programmed to, in response to a transmission shift into a torque enabled state during charge current flow from the secondary coil to the battery, interrupt the charge current flow to discontinue charging of the battery prior to drive off of the vehicle.
Abstract:
A bicycle component control apparatus is basically provided with a controller that is configured to operate a first electrical bicycle component in response to receiving a first signal from a first input member, and to operate a second electrical bicycle component in response to receiving a second signal from a second input member. The controller is configured to prohibit operation of the second electrical bicycle component upon starting operation of the first electrical bicycle component.
Abstract:
A work vehicle comprising, a power unit, an electric motor activated by electric power from the power unit, a propelling transmission system for receiving drive power from the electric motor, a cabin including a roof portion the driver rides, an air conditioner for adjusting air temperature in the interior of the cabin. the power unit and the air conditioner are provided in the roof portion of the cabin.
Abstract:
There is provided a motor drive comprising: a temperature sensor arranged to sense a temperature of the drive; a braking resistor; switching means arranged when activated to cause current to flow to the braking resistor; and controlling means arranged to activate the switching means when the sensed temperature falls below a predetermined threshold. There is also provided a method of controlling a temperature of a motor drive comprising a braking resistor. The method comprising comprises: monitoring a temperature of the drive; and activating switching means to cause current to flow to the braking resistor when the monitored temperature falls below a predetermined threshold.
Abstract:
A temperature management system of a fuel cell vehicle includes a radiator, a water pump, an ion filter, a flow control valve, a state detector and a controller. The radiator is configured to emit heat generated from a fuel cell stack via cooling water, and the water pump is configured to circulate the cooling water through the system. Additionally, an ion filter is disposed in a branch line branched from a cooling water circulating line connecting the fuel cell stack and the radiator. The state detector is configured to detect cooling water state information and the flow control valve is configured to selectively interrupt a flow of the cooling water into the ion filter; and a controller configured to control an operation of the flow control valve depending on the cooling water state information detected by the state detector.
Abstract:
A vehicular battery system includes a vehicular battery system stack including at least one negative electrode including a form of lithium, an oxygen reservoir having a first outlet operably connected to the vehicular battery system stack, a multistage compressor having a first inlet operably connected to the vehicular battery system stack, and a second outlet operably connected to a second inlet of the oxygen reservoir, and a cooling system operably connected to the multistage compressor and configured to provide a coolant to the multistage compressor to cool a compressed fluid within the multistage compressor.
Abstract:
A system supplying electrical power to a vehicle including: a network of electricity consuming units; a first electrical accumulation battery connected to the network, exhibiting a first maximum voltage when unloaded less than a maximum network voltage; a second electrical accumulation battery connected to the network, exhibiting a second maximum voltage when unloaded greater than the maximum voltage when unloaded of the first battery, and a minimum acceptable voltage when unloaded below the maximum network voltage; a drivable alternator connected to the network, configured to deliver to the second battery an electrical energy under a setpoint voltage drivable to various setpoint values; an electronic management facility, configured to impose at least two different setpoint voltages successively on the alternator when the vehicle is running, a low alternator voltage greater than the first maximum voltage, and a high alternator voltage greater both than the minimum voltage and than the low alternator voltage.
Abstract:
An electrical energy storage device for motor vehicles. The electrical energy storage device includes at least one battery module with a plurality of individual cells which are arranged in a stack between two outer end plates. At least one individual cell is arranged in an individual module.
Abstract:
In at least one embodiment, a vehicle includes a battery and an inductive charge plate electrically connected with the battery. The vehicle further includes at least one controller configured to, in response to detecting an authenticated charge system, cause an initiation signal to be transmitted such that the charge system initiates charging of the battery via the charge plate and cause an association signal to be intermittently or continuously transmitted such that charging of the battery via the charge plate is maintained.