Abstract:
An elevator system includes at least two independently operable elevator cars in an elevator shaft. The elevator system includes a virtual landing.
Abstract:
An elevator system comprises at least two independently operable elevator cars in each of a plurality of elevator shafts within a building. The elevator system comprises at least one first elevator shaft having a lower first and a lower second region, where a first elevator car moves within the lower first region of the first elevator shaft and a second elevator car moves within the lower second region. The first and second elevators are moveably controlled independently of each other within the first shaft. The system also includes at least one second elevator shaft having an upper first and an upper second region, where a third elevator car moves within the upper first region of the second elevator shaft and a fourth elevator car moving within the upper second region. The third and fourth elevator cars also are moveably controlled independently of each other.
Abstract:
In a multi-deck-elevator-equipped building control system, operating modes of an elevator control portion include a double operating mode. In the double operating mode, only a first cage is permitted to stop at first cage stop floors, and only a second cage is permitted to stop at second cage stop floors that are distinct from the first cage stop floors. A building fixture control portion has a first group control portion for associatively controlling an electrical fixture on the first cage stop floors and a second group control portion for associatively controlling an electrical fixture on the second cage stop floors.
Abstract:
An elevator group control method for allocating landing calls and car calls to elevators so that the objectives set are met. In the method, a car-specific energy consumption file is generated to describe the energy consumption occurring during each trip of the elevator from each floor to each one of the other floors with different loads, and the calls are so allocated that the energy consumption resulting from serving all the active calls is minimized.
Abstract:
A device for controlling a elevator installation with multiple deck cars which are simultaneously accessible at a main stopping point by different main stopping floors includes a call registering device by which a passenger can input a destination floor. In order to enable a more rapid filling of the building, a conversion unit responds to the destination call travel orders already allocated to and/or demanded of the multiple car having the deck which is to be allocated to the passenger to minimize the number of stops of the car. An indicating device indicates to the passenger the allocated car deck and/or the main stopping floor thereof.
Abstract:
A group control for double car elevators permits the upper as well as the lower cars to be used at a main stopping floor for travel to both even-numbered and odd-numbered floors. The control has a call memory for each car in which the target calls entered at the main stopping floor and identifying the target floors are stored. A switching circuit has an input connected to the call memories in such a manner that the double car is scheduled in dependence on the allocated call as stopping at floor pairs numbered even-odd or odd-even. An output of the switching circuit is connected to a switching device which excludes either the double cars stopping at floor pairs numbered even-odd or at floor pairs numbered odd-even from the allocation process in the case of a subsequent call to be allocated in order to maximize the possiblilities for coincident stops without losing flexibility.
Abstract:
In an elevator having a group of double-deck cars, a hall call is assigned to one of the decks according to a priority scheme that takes into account the service capability of each car and its decks in a way that favors assignment of the call to the lagging deck of the car most capable of answering the call.
Abstract:
A group control for elevators in which the allocations of the individual cars of double cars in an elevator group to stored floor calls can be optimized with respect to time, and newly occurring floor calls can be assigned immediately. A computing device is provided for each elevator to calculate operating costs of each car corresponding to the waiting and delay times of passengers at the floor and aboard the car with regard to each floor. The operating costs are reduced if unidirectional calls exist on the calculation floor and on a directly adjacent floor, and/or if coincidences of car calls and such floors occur. The operating costs of the two cars of a double car are compared with one another and the smaller costs are stored in a cost memory. During a cost comparison cycle, the operating costs of all elevators are compared with one another floor by floor via a comparator, whereby an allocation instruction is stored in an allocation memory of the elevator with the smallest operating costs. The allocation instruction designates the floor to which the car is assigned optimally with respect to time.
Abstract:
Controls for multicompartment elevator cars including, one, an arrangement operating while a car is parked and in response to the answering of a hall call for one direction of travel by one compartment to delay for at least a predetermined period the answering of a hall call for the other direction by the other compartment; two, an arrangement for preventing under certain circumstances the registration of certain car calls in each of the compartments of a car; three, an arrangement in which two separate hall call registration devices are provided at a predetermined intermediate landing for indicating desired travel in a particular direction from that landing, one for travel to odd landings in that direction and the other for travel to even landings; four, an arrangement for stopping some of a plurality of two compartment cars with their lower compartments for odd landing hall calls and the rest of the cars with their upper compartments for even landing hall calls; five, an arrangement for preventing both the registration of car calls for even landings in lower compartments stopped for odd landing hall calls and the registration of car calls for odd landings in upper compartments stopped for even landing hall calls; six, an arrangement for transferring selection at a dispatching floor from a selected car to another car in response to an indication that a passenger at that floor desires to travel to a landing which is not served by the compartment of the selected car adjacent the dispatching floor; and seven, an arrangement for transferring selection at a dispatching floor from a selected car to another car in response to the registration of a hall call at a predetermined landing which the selected car cannot answer.
Abstract:
An elevator group control system, which can perform an appropriate operation so that a user can shorten the time spent until the user arrives at a destination floor in a double-deck elevator performing a double operation in at least one running direction, including a hall operating panel by use of which a user inputs a destination floor in a prescribed hall of an elevator. In a case an operation-prohibited floor of a car stopping at the hall is inputted as a destination floor from the hall operating panel, a group control device registers, as a service floor of the car, a floor preceding or beyond the destination floor inputted from the hall operating panel.