Abstract:
A microfluidic device includes a semiconductor chip having a main chip surface. The microfluidic device further includes an encapsulation body embedding the semiconductor chip, the encapsulation body having a main body surface. A microfluidic component extends over the main chip surface and over the main encapsulation body surface and traverses an outline of the main chip surface.
Abstract:
Producing a nanowire structural element with a nanowire array between two cover layers forming a hollow chamber permeated in a column-like manner with nanowires. The process includes: preparing a template foil; application of a first surface covering electroconductive cover layer on a first side of the template foil; generation of numerous nanopores in the template foil; generation of nanowires in the nanopores wherein an electroconductive material fills the nanopores by electrochemical deposition, wherein the nanowires grow within the nanopores on the first cover layer; generation of a second surface filling cover layer on the second side of the template foil thus forming a sandwich-like arrangement of the two cover layers and the template foil permeated with nanowires; and clearing the structured hollow chamber between by dissolving of the template foil and removal of the dissolved template substance, wherein the two cover layers remain intact.
Abstract:
A method of fabricating a micro-device having micro-features on glass is presented. The method includes the steps of preparing a first glass substrate, fabricating a metallic pattern on the first glass substrate, preparing a second glass substrate and providing one or more apertures on the second glass substrate, heating the first glass substrate and the second glass substrate with a controlled temperature raise, bonding the first glass substrate and the second glass substrate by applying pressure to form a bonded substrate, wherein the metallic pattern is embedded within the bonded substrate, cooling the bonded substrate with a controlled temperature drop and thereafter maintaining the bonded substrate at a temperature suitable for etching, etching the metallic pattern within the bonded substrate, wherein an etchant has access to the metallic pattern via the apertures, forming a void within the bonded substrate, wherein the void comprises micro-features.
Abstract:
A microfluidic component made of a metal sheet having a structure which includes a closed fluid line and which is formed of a structured surface of a first section of the metal sheet and an adjoining structured or unstructured surface of a second section of the metal sheet, wherein the metal sheet is folded such that the sections integrally connected to each other are located on top of each other in a surface-parallel manner. The metal sheet further includes at least one third section having a contoured edge and is moreover folded such that the third section is also supported in a surface-parallel manner and the contoured edge forms a first wall section and the adjoining structured or unstructured surface of the first or second section forms a second wall section of an open fluid line. A microfluidic reactor comprising a plurality of such microfluidic components and a method for producing such components.
Abstract:
Materials and methods are provided for fabricating microfluidic devices. The materials include low surface energy fluoropolymer compositions having multiple cure functional groups. The materials can include multiple photocurable and/or thermal-curable functional groups such that laminate devices can be fabricated. The materials also substantially do not swell in the presence of hydrocarbon solvents.
Abstract:
It is an object of this invention to prevent a resistor material and an electrode material from diffusing and suppress variation in electric resistance. In a device including a plurality of metal layers of different compositions on a substrate and a second structure made of a material, such as glass paste, requiring a firing process at the time of formation, an intermediate layer is formed between a first metal layer and a second metal layer forming the first structure. The intermediate layer is of an intermetallic compound including one or more metallic elements in the first metal layer and one or more metallic elements in the second metal layer. The melting point of the intermetallic compound is higher than a firing temperature when the second structure is formed, and the intermetallic compound is produced at a temperature higher than the firing temperature for forming the second structure.
Abstract:
A microchip which comprises: a resinous base having a plurality of fine channels formed on one side thereof, one or more cylindrical parts disposed so as to protrude from the other side, and a through-hole which pierces each cylindrical part along the axis thereof and communicates with the fine channel so that the diameter of the inner wall of the through-hole gradually decreases from the tip end of the cylindrical part toward the fine channel at a first inclination angle; and a resinous covering member bonded to that side of the resinous base on which the fine channels have been formed. The microchip has been configured so that a liquid sample can be introduced from the tip end of each cylindrical part through the through-hole. The wall thickness of the cylindrical part on the end side where a liquid sample is to be introduced has been made smaller than the wall thickness thereof on the base side where the cylindrical part has been formed, by forming a step therebetween.
Abstract:
Materials and Methods are provided for fabricating microfluidic devices. The materials include low surface energy fluoropolymer compositions having multiple cure functional groups. The materials can include multiple photocurable and/or thermal-curable functional groups such that laminate devices can be fabricated. The materials also substantially do not swell in the presence of hydrocarbon solvents.
Abstract:
A micro-channel chip is produced while preventing a resinous film from sagging into the channel. The chip hence inhibits a liquid specimen from residing therein. With the chip, quantitativeness and reproducibility are heightened. A process for producing a micro-channel chip is provided which comprises bonding a resinous film 020 to that side of a resinous substrate 010 which has channel grooves 011 formed. The deflection temperature under load of the resinous substrate 010 Ts (.degree. C), and the deflection temperature under load of the resinous film 020, Tf (degree. C), satisfy Ts>Tf The process includes a pressing stage in which the resinous substrate 010 and the resinous film 020 are press-bonded at a bonding temperature, T (.degree. C), satisfying Tf−5 (.degree. C)
Abstract:
A microchip 1 in which a resinous film can be inhibited from sagging into a channel. The microchip 1 comprises: a resinous substrate 2 having a channel groove formed therein; and a resinous film bonded to a surface of the substrate on which the channel groove has been formed. A micro-channel 3 including channels 3A and channels 3B is formed by the channel groove and the resinous film 10. The total length of the channels 3B, which is parallel to the X direction for the resinous substrate 2, is larger than the total length of the channels 3A, which is parallel to the Y direction for the resinous substrate 2. The resinous substrate 2 has been bonded to the resinous film so that the sides parallel to the channels 3B are parallel to the TD direction of the resinous film and that the sides parallel to the channels 3A are parallel to the MD direction of the resinous film.