Abstract:
The invention relates to a process for preparing a foamed polymer composition using expandable hollow microbeads, wherein, in a first process strand, first starting materials, which include at least the predominant portion of the polymer or polymers to be used, are mixed and degassed to give a premix, whereafter this premix is subjected to a pressure such that the pairing of this pressure with the temperature of the premix is below the pressure and temperature pairing that is critical for triggering the expansion of the hollow microbeads to be used, wherein, in a second process strand, second starting materials, including the hollow microbeads to be used, are degassed, whereafter the second starting materials treated in the second process strand are added to the premix prepared in the first process strand, whereafter the second starting materials are mixed with the premix.
Abstract:
The method of foaming and applying a sealing material is characterized by comprising the steps of hot-melting the sealing material; mixing nitrogen gas into the melted sealing material under a predefined pressurization; discharging the resultant mixture at a predefined pressure into the air to thus foam the mixture and simultaneously apply it to a place necessary to seal, thus making a sealing foam; and curing this sealing foam by ultraviolet rays. By this method, the sealing material does not involve flowing after applied, and shows an excellent sealing performance even under severe heat resistance conditions, and also can make good independent cells inside even when used in a foamed condition.
Abstract:
Methods for making polymer particles in gel form via an emulsion and/or suspension polymerization are provided. In at least one specific embodiment, the method can include reacting a first reaction mixture comprising a phenolic monomer, an aldehyde monomer, and a first catalyst to produce a prepolymer. The method can also include combining the prepolymer with a carrier fluid and a second catalyst to produce a second reaction mixture. The second catalyst can include a dicarboxylic acid, an anhydride, a dihydroxybenzene, or any mixture thereof. The method can also include polymerizing the prepolymer to form polymer particles in gel form.
Abstract:
An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material, and linear organo-amine polymeric materials having an Mw from about 160 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material. This disclosure also relates to processes for preparing the crosslinked and linear organo-amine materials, as well as to selective removal of CO2 and/or other acid gases from a gaseous stream using the adsorption-desorption materials.
Abstract:
Phenolic closed-cell foam comprises a hydrocarbon blowing agent and includes an alkali metal silicate in an amount of at least 1% by weight. The foam has an aged thermal conductivity as determined by the procedures of EN13166:2008 of less than 0.025 W/m·K. The foam is formed from a phenolic resole resin mixture having a water content of greater than 15% by weight but less than 24% by weight.
Abstract:
There are provided a resin composition for foaming including a biodegradable resin and a foamed article made thereof. The resin composition for foaming according to the present invention includes an ethylene-vinyl acetate resin, a biodegradable polyester resin containing a monomer of a double bond compound, a cross-linking agent, a co-crosslinking agent, a filler, and a foaming agent. In the resin composition, the double bond in the biodegradable polyester resin can be chemically cross-linked to the ethylene-vinyl acetate resin by a cross-linking agent, so that a compatibility with the ethylene-vinyl acetate resin can be improved, processability (mold releasability) during a mixing and melting process can be improved, and a foaming property and a mechanical property of a foamed article can be remarkably improved.
Abstract:
Provided is a sealing material having low hardness, low density, and excellent sealing properties. A sealing material, made by vulcanizing and foaming a blend containing: a thermoplastic resin; a foaming agent; a vulcanizing agent; and a rubber component containing a rubber copolymer of ethylene, a non-conjugate diene, and an α-olefin with 3 or more carbon atoms; wherein the blend contains 2 to 4 mass parts of stearic acid and 5 to 7 mass parts of CaO in 100 mass parts of the rubber component, and the 50% compressive stress of the sealing material is 100 kPa or less.
Abstract:
Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.
Abstract:
Foams for filling cavities and crevasses and for forming foamed products are provided. The latex foam may include an A-side containing a functionalized latex and a B-side that contains a crosslinking agent and optionally a non-functionalized latex. The A- and/or B-side contain a blowing agent package or components forming the blowing agent package. The blowing agent package may be the combination of two or more chemicals that when mixed together form a gas or a chemical compound that, when activated by heat or light, forms a gas. In an alternate embodiment, the latex foam includes a functionalized latex, an acid, and an encapsulated crosslinking agent and base. Alternatively, the spray latex foam may include a functionalized latex, a crosslinking agent, and an encapsulated dry acid and dry base. The encapsulating agent may be a protective, non-reactive shell that can be broken or melted at the time of application.
Abstract:
The invention relates to a silicone composition comprising components bearing ≡SiH/≡SiOH groups, which can be polymerised/cross-linked by means of a dehydrogenative condensation reaction in the presence of a carbene-type catalyst in solution.