Abstract:
This invention relates to a method of forming a polymer component and comprises blending polymer particles with antioxidant to form a mixture in which the antioxidant coats the polymer particles, irradiating the polymer particles to cross-link the polymer particles therein and forming the irradiated mixture into a consolidated component. The invention also relates to a method of forming an articular surface for a prosthesis and a prosthesis having a polymer articular bearing surface wherein at least one pre-determined portion of the bearing surface is provided with cross-linked polymer bonds.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
The object of the present invention is to provide an oxygen-absorbing resin composition having a high oxygen absorbability and capable of absorbing oxygen for a long period of time. The present invention provides an oxygen-absorbing resin composition comprising polyolefin resin (A) obtained by polymerizing an olefin having 2 to 8 carbon atoms, resin (B) which is other than resin (A) and which acts as a trigger for the oxidation of resin (A), and transition metal catalyst (C), wherein resin (B) is dispersed in the matrix of resin (A) so that the oxidation reaction of matrix resin (A) is caused and thus oxygen is absorbed when the oxygen-absorbing resin composition is brought into contact with oxygen. This oxygen absorbing resin composition has a high oxygen absorbability and is advantageous in cost because oxygen is absorbed in resin (A).
Abstract:
The present invention provides a composition comprising: a polyester base polymer; at least one non-polymeric oxidizable organic compound; at least one transition metal in a positive oxidation state, said metal being present in the composition in an amount of from about 10 to about 400 ppm, wherein the polyester base polymer comprises less than about 40 ppm phosphorous. The compositions of the present invention do not exhibit an induction period prior to the onset of oxygen scavenging upon formation into a container.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
This invention related to a method of forming a polymer component and comprises blending polymer particles with antioxidant to form a mixture in which the antioxidant coats the polymer particles, irradiating the polymer particles to cross-link the polymer particles therein and forming the irradiated mixture into a consolidated component. The invention also relates to a method of forming an articular surface for a prosthesis and a prosthesis having a polymer articular bearing surface wherein at least one predetermined portion of the bearing surface is provided with cross-linked polymer bonds.
Abstract:
This application discloses the use of polyamide-polydiene blends to improve the oxygen reactivity in the presence of ionic polyester compatibilizers.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
[Problem]To provide an oxygen-absorbing multilayer film which exhibits high oxygen-absorbability without the addition of a transition metal salt usually added as a catalyst for the purpose of enhancing oxygen-absorbability and which does not cause a problem of odors even after absorbing oxygen, a packaging material comprising the multilayer film, and a packaging container obtained by molding this packaging material.[Means for Dissolution]An oxygen-absorbing multilayer film having a thickness of less than 250 μm that comprises a gas barrier material layer, an oxygen-absorbent layer and a sealing material layer laminated in this order, wherein an oxygen-absorbent constituting the subject oxygen-absorbent layer comprises a cyclized product of a conjugated diene polymer as the major component. There are also disclosed a packaging material comprising this multilayer film and a packaging container obtained by molding this packaging material.