Abstract:
A valve timing control device includes a lock mechanism having a hole portion formed in one of the driving-side/driven-side rotational members, a sleeve in the hole portion, a lock member in the sleeve and capable of projecting and retracting with respect to the other of the driving-side/driven-side members, and a lock hole formed in the other of the driving-side/driven-side members such that the lock member can be fitted to the lock hole when the lock member projects. The lock mechanism constrains a relative rotational phase of the driven-side rotational member with respect to the driving-side rotational member at a predetermined phase when the lock member is fitted to the lock hole. A first chamfered surface is formed in the circumferential direction at an inner-circumferential corner of an end of the sleeve on the side opposite to the side facing the lock hole.
Abstract:
A variable valve device includes: a drive shaft member rotating synchronously with a crankshaft provided in an internal combustion engine; a cam shaft member including a cam lobe and rotatably provided about the drive shaft member; a drive arm portion provided in the drive shaft member and rotating together with the drive shaft member; a control sleeve provided with an eccentric hole into which the drive shaft member is inserted, and arranged to vary a position of a central axis of the eccentric hole; and a first rotary member including a first member connected to the drive arm portion and a second member connected to the cam shaft member, and rotating along an inner circumferential wall surface of the eccentric hole.
Abstract:
An oil control valve has a housing and a spool valve that is arranged in the housing and is movable in the axial direction. The movement range of the spool valve includes a first area and a second area. In the first area, a port that is connected to a lock mechanism opens to prevent the movement of a variable valve timing mechanism through drainage of oil from the lock mechanism. In the second area, oil is supplied and drained to and from the variable valve timing mechanism through a passage inside the spool valve. The first area exists at a position separated from the second area in the movement range.
Abstract:
A valve timing controller includes a driving-side rotary member, a driven-side rotary member, an advancing chamber and a retarding chamber formed as a fluid pressure chamber is partitioned by a partitioning portion provided on an outer circumferential side of the driven-side rotary member, and a phase controlling section. The driven-side rotary member includes an advancing passage communicated to the advancing chamber and a retarding passage communicated to the retarding chamber. The driving-side rotary member is formed of an aluminum-based material. The driven-side rotary member integrally includes an outer circumferential member having the partitioning portion and formed of an aluminum-based material, and an inner circumferential member constituting an inner circumferential side of the outer circumferential member and formed of an iron-based material.
Abstract:
A valve timing control device includes a driving rotary element synchronously rotatable with a crankshaft; a driven rotary element mounted coaxially with the driving rotary element and synchronously rotatable with a camshaft; a plurality of partitions provided in the driven rotary element each for dividing a fluid pressure chamber formed between the driving rotary element and the driven rotary element into a regarded angle chamber and an advanced angle chamber; and a connecting element for connecting the driven rotary element to the camshaft. The connecting element includes a flange inserted into a recess formed in the driven rotatory element, and a shaft portion inserted into a through bore formed in a wall of the driving rotary element adjacent to the camshaft. The flange has an outer diameter larger than that of the shaft portion, and is disposed between the driven rotary element and the wall.
Abstract:
The invention relates to a camshaft variator device for an internal combustion engine which includes a crankshaft and a camshaft. The invention includes: a first component which is rigidly connected to the camshaft of the engine, such that the rotation of the first component causes the camshaft to rotate; a second component which is rotated by the crankshaft of the engine; a third component which connects the first and second components to one another and which, in turn, rotates the first component in relation to the second component in order to vary the position and partial speed of the camshaft in respect of the crankshaft; and a fourth component which is used to impart a longitudinal and reciprocating longitudinal movement to the third component. The purpose of the device is to enable the opening and closing time and duration of the valves to be varied by varying the position and partial speed of the camshaft in relation to the crankshaft.
Abstract:
A phase variable device for use with a car engine, capable of preventing the phase angle of the camshaft from varying relative to the first circular rotational body. The device includes: a first rotational body, an intermediate rotational bode integral with the camshaft of an engine, a second rotational body, all rotatably arranged on the same camshaft, the device adapted to control phase angle of the second rotational body, thereby varying the phase angle of the intermediate rotational body. The second rotational body is placed in substantial contact with the inside of the hollow cylindrical section of the intermediate rotational body. A circular eccentric cam, integral with the second rotational body and adapted to rotate about an eccentric center thereof, causes a cam guide plate to reciprocate in the direction perpendicular to the rotational axis.
Abstract:
The variable valve gear for an internal combustion engine includes a cam lobe that is rotatably supported by a cam drive shaft, and a variable valve mechanism that includes a drive arm fixed adjacent to one end of the cam lobe in the cam drive shaft, an eccentric shaft member that is swivelably supported at a position opposite to the cam lobe with respect to the drive arm in the cam drive shaft, has an outer circumferential surface eccentric to an axis of the cam drive shaft, and is adjustable in eccentricity, and an intermediate rotary member that is rotatably supported through a bearing member around the eccentric shaft member, and is connected to the drive arm, wherein the drive arm includes an end face that overlaps with an end face of the bearing member, when projecting along the axis of the cam drive shaft, and the end face of the drive arm is protruding further than the end face of the cam lobe toward the bearing member.
Abstract:
A synchronous drive apparatus includes first and a second rotors. The rotors have multiple teeth for engaging sections of an elongate drive structure. A rotary load assembly couples to the second rotor. The elongate drive structure engages about the rotors. The first rotor drives and the second rotor is driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly presents a periodic fluctuating load torque when driven in rotation. The angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or cancels the fluctuating load torque of the rotary load assembly.
Abstract:
A valve timing adjusting apparatus adjusts valve timing of at least one of intake and exhaust valves of an engine that are opened and closed by a camshaft driven by torque transmitted from a crankshaft. The apparatus includes an electric motor, a plurality of switching elements, a motor driver, and a phase adjusting mechanism. When a target rotational direction of a motor shaft of the electric motor is coincident with the actual rotational direction of the same, the motor driver continuously turns on a selected one of the switching elements for the whole of a predetermined rotation angle range of the motor shaft. When the target rotational direction is opposite to the actual rotational direction, the motor driver continuously turns on the selected switching element only for part of the rotation angle range, and continuously turns off the selected switching element for the remaining part of the rotation angle range.