Abstract:
A drop-in signal accumulator piston assembly replaces an original equipment (OE) signal accumulator piston in a vehicle transmission hydraulic circuit. The OE signal accumulator piston is positioned in a bore in a valve body that has an open end and a fluid port. The drop-in signal accumulator piston assembly includes a cylindrical sleeve having open first and second ends and a piston positioned in the sleeve. A spring is positioned in part in the piston and in part extending beyond and end of the piston. A plug is positioned in the bore adjacent the sleeve. The sleeve is positioned in the valve body bore, with the piston, and the spring, and the plug is positioned in the valve body bore to enclose the sleeve, the piston and the spring in the valve body bore. A method for replacing an original equipment (OE) signal accumulator piston in a transmission hydraulic circuit is disclosed.
Abstract:
The invention relates to a hydraulic accumulator, especially a piston accumulator, in which a piston part (27) separates from each other two media spaces (23, 25) inside a storage housing (1), characterized in that the piston part (27) is designed as a deep-drawn part.
Abstract:
The present invention provides a Type 3 pressure vessel comprising a polar boss that is attached to a metallic liner and provides reinforced static strength, fatigue strength, endurance, chemical resistance and/or corrosion resistance of the liner orifice or neck region. In particular, the material of the polar boss has higher static strength, fatigue strength, endurance, chemical resistance and/or corrosion resistance relative to that of the liner material.
Abstract:
A pressure storage unit (2) for a camshaft, having an integrated controllable pressure storage device for supporting hydraulic engine components, which includes a housing (4) with a piston (14) mounted movably therein having a piston floor (18), and a spacer element (28) being provided on the piston floor (18).
Abstract:
A pressure accumulator has a housing having at least one pressure medium opening, a diaphragm chamber arranged inside the housing and having a side wall which is at least partially deformable, and a pressure medium chamber arranged outside of the diaphragm chamber, the pressure medium chamber at least partially being limited by a partially permeable material which allows an exit of gas from the pressure medium chamber but prevents an exit of a pressure medium from the pressure medium chamber.
Abstract:
A pressure accumulator has a housing having at least one pressure medium opening, a diaphragm chamber arranged inside the housing and having a side wall which is at least partially deformable, and a pressure medium chamber arranged outside of the diaphragm chamber, the pressure medium chamber at least partially being limited by a partially permeable material which allows an exit of gas from the pressure medium chamber but prevents an exit of a pressure medium from the pressure medium chamber.
Abstract:
An apparatus for providing a rapid fluid impulse which can be used for launching vehicles into a liquid medium. The apparatus comprises a ring diaphragm of coupled concentric elastomeric rings, adapted to accept pressurized fluid at an interior side. The pressurized fluid extends the elastomeric rings of the ring diaphragm, placing them in shear strain. When the fluid is released, a kinetic impulse is provided and the ring diaphragm returns to its resting position. The apparatus further comprises a central check valve on the ring diaphragm. The check valve allows fluid to flow from an exterior side, through the ring diaphragm, to the interior side when exterior fluid pressure exceeds interior pressure. The invention is useful in a submarine vehicle launch assembly wherein the ring diaphragm is a component thereof.
Abstract:
An accumulator including a shell (1) divided into a gas chamber (9) and a fluid inflow chamber (6) by a bladder (32) made of a cold-resistant and gas-barrier laminated sheet which includes a polyvinyl alcohol type resin film (20) containing a polyol type plasticizer in an amount of 15% to 50% by weight, a rubber sheet layer (21) laminated at least on one side of the polyvinyl alcohol type resin film and a film (23) disposed therebetween of a non-vapor and non-plasticizer-permeable resin film.
Abstract:
For sealing between two opposed surfaces of two machine elements (1, 2) a combination seal is provided to be fitted into an open groove (3) in one of the machine elements (2). The seal comprises an electomeric expansion ring (4, 5) at the bottom of the groove (3), an intermediate ring (6) made of a viscous-elastic material, e.g. PTFE and having a sealing surface (6b) to contact the mating machine element (2), and an elastomeric outer ring (8) fitted into a separate groove (7) in the sealing surface (6b) of the intermediate ring. Especially in cases where the seal is to separate fluid and gas an improved distribution of the contact pressure at the sealing surface (6b) and also an effective hydrodynamic relief of the outer ring (8) preventing its exposure to injurious pressures and subsequent damage is obtained by designing the intermediate ring (6) at the ends of the sealing surface (6b) with comparatively sharp corners (16, 17), the parts of the sealing surface between these corners and the separate groove (7) forming conical faces (14, 15) which at a narrow slit angle converge towards the separate groove (7). The intermediate ring may also be biassed by the two expansion rings (4, 5) placed on each side of the separate groove (7).
Abstract:
An accumulator of the type that an interior of a vessel main body provided with a feed/discharge port or ports is partitioned into a gas chamber and a liquid chamber by means of a bladder, an inner tube having communication holes is disposed between the feed/discharge port or ports and the bladder, and valve bodies for opening and closing the communication holes are provided on the inside of the inner tube; the communication holes are inclined with respect to the axis of the vessel main body so that liquid passing through the communication holes may collide obliquely against the valve bodies.