Abstract:
A power supply circuit for a liquid crystal welding lens or shutter develops a relatively low voltage AC signal for driving or powering the liquid crystal shutter to the clear state and two relatively higher or larger magnitude AC electrical signals for initially driving the shutter to the dark state and then for maintaining the shutter in the dark state; a variable frequency circuit for varying the frequency of the driving signal to the shutter to minimize power usage in the dark state and to avoid flicker in the clear state; and power saving and battery level indicator features are included.
Abstract:
A low light sensing and amplifying device uses an automatically adjustable electro-optic shutter that quantitatively attenuates the amount of monitored electromagnetic energy impinging on a light processor in proportional relation to the electromagnetic energy's intensity. An output signal from the light processor controls the output of a power supply which provides an output supply signal to the electro-optic shutter.
Abstract:
A removable protective lens assembly for a photocell or timing light. The lens assembly can be installed in any box having a side in which a hole can be drilled. The lens assembly includes a Lexan plug threaded into an opening in the box and a filter of transluscent plexiglas supported within the plug by a retainer ring. The lens assembly prevents tampering with the photocell by vandals and filters ultra-violet rays from reaching and damaging the photocell.
Abstract:
An optical sensor module and a packaging method thereof are disclosed, wherein the optical sensor module comprises a substrate having a light sensing element; and a housing made of a transparent material. The housing is connected to the substrate and covers the light sensing element. The housing has a light-receiving area facing the light sensing element, and the inner surface of the housing toward the substrate is provided with a light-shielding coating in a portion outside of the light-receiving area. In this way, optical components such as the light sensor can be effectively protected, and still retain the effect of avoiding noise light interference with the light sensor module.
Abstract:
A measuring apparatus includes a light receiving device, a housing, an optical window, an electrical connection line, and a line enclosure. The light receiving device receives light and output a signal. The housing, made of a conductive material, covers the light receiving device. The optical window transmits the light. The optical window includes a conductive part having conductivity. The electrical connection line transmits the signal. The line enclosure is disposed around the electrical connection line and electrically connected to the conductive part and the housing.
Abstract:
A light sensor is provided that includes an exposed light transducer for accumulating charge in proportion to light incident thereon over an integration period; and a light-to-pulse circuit in communication with the exposed light transducer, the light-to-pulse circuit operative to output a pulse having a pulse width based on the charge accumulated by the exposed light transducer. The light-to-pulse circuit may include a one shot logic circuit that contributes to generation of the pulse. The light sensor may include an input/output pad, a capacitor provided at the input/output pad for blocking static electricity, an input low pass filter provided at the input/output pad for blocking electromagnetic interference, and/or a bandgap voltage reference circuit connected to a power source having a supply voltage level in a range of about 3.3V to about 5.0V, and for generating a set of stable reference voltages throughout the supply voltage level range.
Abstract:
An electronic device including a substrate and an optoelectronic device package is provided. The optoelectronic device package includes a light source, an image sensor and a plurality of connecting pins. The light source is configured to emit light toward a direction of a bottom surface of the optoelectronic device package. The image sensor is configured to receive reflected light from the direction of the bottom surface. The connecting pins are bended toward an opposite direction of the direction of the bottom surface and electrically connected to the substrate thereby increasing a discharge path of the electrostatic discharge.
Abstract:
A rearview assembly for a vehicle is provided that includes: a housing configured for mounting to the vehicle; a rearview element disposed in the housing that displays images of a scene exterior of the vehicle; a light sensor assembly disposed in the housing; and a controller for receiving the electrical signal of the light sensor and for adjusting a brightness of the images displayed by the rearview element. The light sensor includes a light sensor for outputting an electrical signal representing intensity of light impinging upon a light-receiving surface of the light sensor, and a secondary optical element configured to receive light, wherein the light passes through the secondary optical element to the light sensor, the secondary optical element including a tint material that is substantially color neutral for attenuating light passing therethrough.
Abstract:
The invention relates to a UV light sensor produced in a CMOS method, comprising a substrate that has a surface, one or more sensor elements that detect radiation and are designed in said substrate, at least one passivation layer arranged over said substrate surface, and a functional layer that is arranged over said passivation layer and designed in the form of at least one filter. The problem addressed by the invention of providing a UV light sensor which is sensitive exclusively within the UV wavelength range is solved, in terms of arrangement, by means of filters designed directly on a planar passivation layer, and stray light suppressing means around said at least one sensor element and/or around the UV light sensor. In terms of the method, the problem is solved by measuring two output signal from at least two photo diodes fitted with different filters, and by determining a mathematical relationship between the two output signals.
Abstract:
A sensor module for a vehicle includes a sensor unit enclosed in a housing. The sensor unit has an active end which emits or receives said radiation beam. The housing has a removable cover, a back wall for mounting to the vehicle, a bottom wall, a first end wall and a second end wall spaced apart from the first end wall. The radiation beam is directed through an opening in the first end wall. The active end is internal to the housing and spaced apart internally from the first end wall. A hollow sleeve is received by the opening, and a portion of the sleeve receives at least a portion of the sensor unit. The active end of the sensor unit is inside the sleeve and spaced apart from an end of the sleeve.