Abstract:
The metallic substrate of this cathode has a thickness ≦100 μm and contains a plurality of reducing agents as Si or Al and on the top face 111, 0.005%
Abstract:
A method of reducing a fluctuation in a cut-off voltage of a cathode for an electron tube in which a metal layer for protrusively deforming a cathode substrate when heated is formed on a surface of the cathode substrate, and an electron emissive material layer is formed on the front face of the cathode substrate directly or through the metal layer and a heater for heating the electron emissive material layer to emit a thermion from a front face of the electron emissive material layer is provided. When the front face of the electron emissive material layer is consumed and retreats, the protrusive deformation of the cathode substrate by the metal layer is induced by a heating operation of the heater so that the front face of the electron emissive material layer is correspondingly deformed protrusively.
Abstract:
An indirectly heated button cathode for use in the ion source of an ion implanter has a button member formed of a slug piece mounted in a collar piece. The slug piece is thermally insulated from the collar piece to enable it to operate at a higher temperature so that electron emission is enhanced and concentrated over the surface of the slug piece. The slug piece and collar piece can be both of tungsten. Instead the slug piece may be of tantalum to provide a lower thermionic work function. The resultant concentrated plasma in the ion source is effective to enhance the production of higher charge state ions, particularly P+++ for subsequent acceleration for high energy implantation.
Abstract:
The present invention relates to a cathode in a cathode ray tube which can shorten a picture presentation time lag and reduce power consumption. The cathode includes an emission layer at an upper part of the cathode and a sleeve for inserting a heater therein, wherein the sleeve contains a blackened material, and has a porous surface.
Abstract:
An improved cathode structure for a cathode ray tube includes a first metal tube which can receive an emission part and a heating element, a second metal tube constituting the cathode shielding, and means for retaining the first tube in position inside the second, wherein the retaining means are constituted by a single metal piece. In a preferential mode of implementation, the metal retention piece is constituted by a crown having branches extending in the direction of the axis of the crown.
Abstract:
An indirect cathode sleeve and manufacturing method thereof capable of substantially reducing electric power consumption of a heater disposed inside the cathode sleeve and simultaneously reducing a picture-producing time by oxidizing an inside surface of the cathode sleeve and reducing an outside surface thereof. The cathode sleeve includes a heater disposed inside the cathode sleeve; a base metal formed at the top of the cathode sleeve; an electron-emitting material layer formed at the outside surface of the base metal; and an indirect cathode sleeve including a black inside surface and a white outside surface. The method for manufacturing the indirect cathode sleeve includes the steps of forming a structure of a cathode sleeve consisting of a bimetal which consist of a Nickel-Chrome alloy at an inside surface of the cathode sleeve and a Nickel alloy at an outside surface of the cathode sleeve; oxidizing the inside surface of the cathode sleeve through a high temperature wet hydrogen environment; selectively etching the outside surface of the cathode sleeve and, as a result, forming a base metal at the top of the cathode sleeve; and forming an electron-emitting material layer at the outside surface of the base metal.
Abstract:
A cathode-ray tube having an electron gun includes at least one cathode assembly comprising a novel cathode sleeve, a heater filament disposed within the sleeve and a cathode eyelet disposed around at least a portion of the cathode sleeve and attached thereto. The cathode sleeve has oppositely disposed ends, one end being open and the other end being closed by a cap having an electron emitting coating thereon. The novel cathode sleeve comprises a longitudinally extending first portion having a first diameter conforming closely to the heater body portion of the heater filament for reducing the power requirement thereof, and at least one other longitudinally extending portion having a diameter greater than the first diameter. The first portion and the other portion of the cathode sleeve being connected by a transition region inclined at an obtuse angle to the longitudinally extending first portion of the sleeve. A plurality of openings having a lateral dimension greater than the effective longitudinal dimension thereof are formed in the transition region to restrict the conduction of heat along the sleeve and to limit the radiative heat loss therethrough from the heater legs disposed within the sleeve.
Abstract:
Cathodes having a support for emissive material of foamed carbon are mechanically stable and resistant to detrition and have a homogeneous pore distribution.
Abstract:
A cathode cap is welded to a metal cylinder over a black sintered metal layer which contains from 60 to 10 percent by weight of metal oxide and which covers the whole cylinder.
Abstract:
In a cathode ray tube electron gun, a dimensional stability, is provided for capping a terminal-emitting cathode sleeve. The cathode closure is diversely shaped to have a mesa-like terminal portion, with the planar end surface therof formed to provide a flat substrate area to accommodate the deposition of electron emissive material thereon. A strengthening transition portion extends from the periphery of the mesa-like portion to form an annular shoulder therearound. A peripheral skirt portion, extending downward from the shoulder, is of a length and internal diameter to facilitate encompassment and affixation to the terminal portion of the sleeve.