Abstract:
An ion generator includes an arc chamber which has a plasma generating region therein, a cathode configured to emit a thermoelectron toward the plasma generating region, a repeller which faces the cathode in an axial direction in a state where the plasma generating region is interposed between the cathode and the repeller, and a cage which is disposed to partially surround the plasma generating region at a position between an inner surface of the arc chamber and the plasma generating region.
Abstract:
Provided herein are approaches for improving ion beam extraction stability and ion beam current for an ion extraction system. In one approach, a source housing assembly may include a source housing surrounding an ion source including an arc chamber, the source housing having an extraction aperture plate mounted at a proximal end thereof. The source housing assembly further includes a vacuum liner disposed within an interior of the source housing to form a barrier around a set of vacuum pumping apertures. As configured, openings in the source housing assembly, other than an opening in the extraction aperture plate, are enclosed by the extraction aperture plate and the vacuum liner, thus ensuring appendix arcs or extraneous ions produced outside the arc chamber remain within the source housing. Just those ions produced within the arc chamber exit the source housing through the opening of the extraction aperture plate.
Abstract:
The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.
Abstract:
The disclosure is directed to a system and method of fueling and mitigating debris for an illumination source. An illumination system may include a plasma-based illumination source. The illumination system may provide illumination along an illumination path emanating from an illumination origin of the illumination source. A gas jet nozzle may be disposed at a selected distance from the illumination origin or proximate to the illumination origin. The gas jet nozzle may be configured to provide fuel gas to fuel the plasma-based illumination source. The gas jet nozzle may be further configured to provide fuel gas in a selected direction substantially opposite to a direction of illumination emanating from the illumination origin to remove at least a portion of debris from the illumination path.
Abstract:
A method and apparatus are disclosed for controlling a semiconductor process temperature. In one embodiment a thermal control device includes a heat source and a housing comprising a vapor chamber coupled to the heat source. The vapor chamber includes an evaporator section and a condenser section. The evaporator section has a first wall associated with the heat source, the first wall having a wick for drawing a working fluid from a lower portion of the vapor chamber to the evaporator section. The condenser section coupled to a cooling element. The vapor chamber is configured to transfer heat from the heat source to the cooling element via continuous evaporation of the working fluid at the evaporator section and condensation of the working fluid at the condenser section. Other embodiments are disclosed and claimed.
Abstract:
The second repeller assembly includes a flat plate and two sleeves through which the legs of a filament pass in electrically insulated manner. The clamp assembly for the filament includes a pair of strap assemblies with three straps each for electrically connecting the clamps and filament to an electrical feed. The straps are in contact with opposite flat sides of a terminal pin.
Abstract:
Self-balancing, corona discharge for the stable production of electrically balanced and ultra-clean ionized gas streams is disclosed. This result is achieved by promoting the electronic conversion of free electrons into negative ions without adding oxygen or another electronegative gas to the gas stream. The invention may be used with electronegative and/or electropositive or noble gas streams and may include the use of a closed loop corona discharge control system.
Abstract:
[Objection of the invention]An ion beam generator, a thermal distortion in a grid assembly is reduced. [Structure to solve the objection]Thermal expansion coefficients αP, αM and αG, for a sidewall (1A) of a discharge chamber, mounting platform (40) and extraction grid electrode assembly (20) are selected to have a relation: αP>αM≧αG. For example, the material of discharge chamber sidewall is stainless steel o aluminum, the material of grids is Mo, W or C and the material of platform is Ti or Mo.
Abstract:
The present invention relates to ion sources (14) comprising a cathode (20) and a counter-cathode (44) that are suitable for ion implanters (10). Typically, the ion source is held under vacuum and produces ions using a plasma generated within an arc chamber (16). Plasma ions are extracted from the arc chamber and subsequently implanted in a semiconductor wafer (12). The ion source according to the present invention further comprises a cathode (40) arranged to emit electrons into the arc chamber; an electrode (44) positioned in the arc chamber such that electrons emitted by the cathode are incident thereon; one or more voltage potential sources (76) arranged to bias the electrode; and a voltage potential adjuster (82) operable to switch between the voltage potential source biasing the electrode positively thereby to act as an anode and the voltage potential source biasing the electrode negatively thereby to act as a counter-cathode.
Abstract:
[Objective of the Invention] An ion beam generator, a thermal distortion in a grid assembly is reduced.[Structure to Solve the Objective] Thermal expansion coefficients αP, αM and αG, for a sidewall (1A) of a discharge chamber, mounting platform (40) and extraction grid electrode assembly (20) are selected to have a relation: αP>αM≧αG. For example, the material of discharge chamber sidewall is stainless steel o aluminum, the material of grids is Mo, W or C and the material of platform is Ti or Mo.