Abstract:
A miniature x-ray tube is cooled using a catheter preferably having multiple small lumens for inflow and outflow of coolant. Inflow may be through an outer lumen(s) in a concentric-extrusion catheter, the liquid turning back at the distal end of the catheter to a proximal flow over the anode end of the x-ray tube and through an inner lumen within which the x-ray tube is positioned. A coolant distribution head may engage with the anode end of the x-ray tube, with small orifices so as to distribute coolant essentially evenly over the anode surface. Temperature and flow rate of the inflowing coolant liquid are balanced so as to optimize heat transfer while efficiently carrying coolant through small lumens without the need for high pressures. Some embodiments use the inflation liquid in an applicator balloon as the coolant, with the liquid actively flowing or, in a simplified system, with the liquid static.
Abstract:
The invention relates to a miniature X-ray source device connected to a distal end of a guiding wire for insertion towards a desired location within an animal body for effecting radiation therapy, said X-ray source device at least comprising a vacuum tube accommodated in said housing containing a cathode and an anode spaced apart at some distance from each other; electron freeing means for freeing electrons from the cathode; electric field means for applying during use a high-voltage electric field between said cathode and said anode for accelerating said free electrons; said vacuum tube being at least partly transparent to X-ray radiation emitted by said anode, as well as cooling means for cooling at least said anode.It is an object to provide a miniature X-ray source device having further limited constructional dimensions and an improved control of the working temperature of at least the anode and hence the working conditions of the miniature X-ray source device.According to the invention the miniature X-ray source device is hereto characterised in that said cooling means are cryogenic cooling means. More in particular in a specific embodiment of said miniature X-ray source device said cooling means comprise at least one supply passageway for supplying pressurized gas towards said anode and at least one exhaust passageway for exhausting said pressurized gas from said anode, said supply passageway and said exhaust passageway being interconnected by means of an expansion chamber surrounding at least partly said anode.
Abstract:
An x-ray tube window cooling assembly (11) for an x-ray tube (18) is provided. The cooling assembly (11) includes an electron collector body (110) coupled to an x-ray tube window (104) and having a first coolant circuit (112). The coolant circuit (112) includes a coolant inlet (114) and a coolant outlet (122). The coolant outlet (122) directs coolant at an x-ray tube window surface (152) to impinge upon and cool the x-ray tube window (104). The coolant is reflected off the reflection surface (146) as to impinge upon and cool the x-ray tube window (104). A method of operating the x-ray tube (18) is also provided.
Abstract:
A window and cooling plenum for use with x-ray devices. The x-ray device includes an x-ray tube at least partially immersed in coolant contained within a reservoir. The coolant is continuously circulated through the reservoir by an external cooling unit. The window is brazed into a vacuum enclosure of the x-ray tube and includes a plurality of extended surfaces that are integral with the window. A compensating window is also provided and is disposed substantially proximate to the extended surfaces of the window so that a fluid passageway is defined. The compensating window and window are substantially enclosed within a cooling plenum having fluid inlet and outlet connections in fluid communication with the fluid passageway and the reservoir. A flow of coolant generated by the external cooling unit enters the fluid passageway so that the coolant is able to absorb heat dissipated by the window. Upon exiting the fluid passageway, the coolant returns to the reservoir to repeat the cycle. In addition to facilitating definition of the fluid passageway, the compensating window includes extended surfaces and slots which serve to attenuate differences in the intensity of x-rays emitted through the extended surfaces and slots of the window. By ensuring that the x-rays ultimately emitted from the x-ray device are of substantially uniform intensity, the compensating window serves to maintain the quality of diagnostic images produced by the x-ray device.
Abstract:
An x-ray tube for emitting x-rays through an x-ray transmissive window is disclosed herein. The x-ray tube includes a casing, an x-ray tube insert which generates x-rays, an x-ray transmissive window disposed in the x-ray tube insert, and at least one heat pipe thermally coupled to the x-ray transmissive window. The x-ray transmissive window provides an area through which the x-rays pass. The heat pipe transfers thermal energy away from the x-ray transmissive window, providing intense, localized cooling of the x-ray window.
Abstract:
To provide an X-ray generator capable of both being compact and containing an air-cooling mechanism, an X-ray generator according to the present invention houses within a protective case both an X-ray tube containing a cathode for irradiating a target with an electron beam, in which X-ray tube the target having a ground potential is fixed to the inner surface of an output window, which in turn is fixed to an electrically and thermally conductive output window support provided on the end of a bulb; and a power supply for driving the X-ray tube. A flange portion formed on the output window support so as to protrude externally contacts and is fixed to the thermally conductive protective case. As a result, heat near 100.degree. C. generated continuously in the X-ray tube is transferred to the protective case and dissipated externally. The thus configured X-ray generator is best suited when used as an electrostatic remover for removing electrostatic accumulations on an object, such as an integrated circuit.
Abstract:
A window material, which has a high thermal conductivity material layer having a thermal conductivity of at least 10 W/cm.multidot.K and which has a cooling medium flow path on or in the high thermal conductivity material layer, has a high heat-dissipating property and a high transmittance.