Abstract:
A cellular radio architecture that includes a transceiver front-end circuit including an antenna and a switch module having a switching network that directs analog transmit signals to be transmitted to the antenna and receives receive signals from the antenna. The architecture further includes a receiver module having a separate signal channel for each of the signal paths in the multiplexer module, where each signal channel in the receiver module includes a receiver delta-sigma modulator that converts analog receive signals to a representative digital signal. The architecture also includes a transmitter module having a transmitter delta-sigma modulator for converting digital data bits to the transmit signals. The transmitter module includes a tunable bandpass filter and a power amplifier for amplifying the transmit signals before transmitting. The architecture also includes a calibration feedback and switch module that receives the amplified signals from the power amplifier.
Abstract:
Reduced noise and power with rapid settling time and increased performance in multi-modal analog multiplexed data acquisition systems. An example apparatus arrangement includes a circuit input configured to receive a plurality of analog input signals; an analog to digital converter circuit configured to output a digital representation of an analog voltage; a selection circuit configured to select one of the analog input signals received at the circuit input; a buffer coupled to receive the selected one of the analog input signals; a filter coupled to the buffer and configured to perform a high bandwidth sample operation and a low bandwidth sample operation and having a filter output, responsive to a control signal; and a sampling capacitor coupled to the filter to sample the filter output, and having an output coupled to the analog to digital converter. Methods and additional apparatus arrangements are disclosed.
Abstract:
The present application describes systems and methods of performing self-interference cancellation. Such systems may include generating a transmit signal along a transmit path of a transceiver, where the transmit signal can be sent through a circulator to isolate the transmit signal from a receiver. The transmit signal may be transmitted from an antenna, and a signal may be reflected from the antenna, where the reflected signal may be at less power than an incident power to the antenna, and where the reflected signal may include a transmitter carrier signal and a transmitter noise. A received signal may be routed from the antenna to the receiver, the reflected signal may be routed through a filter and a phase shifter, and the signal may be combined with the received signal in the receive path to cancel the portion of the transmit signal that entered the receive path towards the receiver from the circulator.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a method for scanning a radio frequency spectrum for an available frequency band, selecting an available frequency band in the radio frequency spectrum even if the available frequency band is affected by radio frequency interference, measuring a signal strength in portions of the available frequency band, correlating the signal strength of each portion to generate a correlation factor, detecting radio frequency interference in the available frequency band according to the correlation factor, and generating tuning coefficient data to cause the filter apparatus to substantially suppress the radio frequency interference in the available frequency band. Other embodiments are disclosed.
Abstract:
A system that incorporates the subject disclosure may perform, for example, a method for detecting signal interference in a first segment of a plurality of segments of a radio frequency spectrum of a wireless communication system, determining according to the signal interference a measure of quality of service of the first segment for transmitting voice traffic, comparing the measure of quality of service to a desired measure of quality of service measure for voice traffic, determining from the comparison that the first segment is not suitable for voice traffic, and notifying a system that the first segment is not suitable for voice traffic. Other embodiments are disclosed.
Abstract:
A method includes: receiving an FM radio signal including an analog-modulated portion; digitally sampling an analog-modulated portion of the radio signal to produce a plurality of samples; using a ratio between an average magnitude and an RMS magnitude of a block of the samples to compute a signal quality metric; detecting sum and difference components of the baseband multiplex signal content; using the baseband content to produce an output signal; and blending the output signal from stereo to monaural as the signal quality metric falls below a threshold value.
Abstract:
Receivers in a mobile device are configured to mitigate receiver overload and fully or nearly-fully utilize available spectrum for communication. Configuration is dictated at least in part by at least one of radio link quality or available receiver specifications, and it can be affected by the mobile device or a base station that serves the mobile device. Receiver configuration includes various spectrally asymmetric receivers that tune respective disparate portions of the available spectrum to maximize utilization thereof in the spectral regions prone to overload conditions. In severe overload conditions, a single receiver can be configured to operate in a frequency band spectrally adjacent to a sub-band that leads to overload conditions when employed for telecommunication. To improve performance, the single receiver configuration can be supplemented with at least one of transmit diversity operation, asymmetric multicarrier spreading, or downlink power boost of asymmetrical multicarrier spreading.
Abstract:
Described herein are architectures, platforms and methods for implementing cancellation of asymmetric quadrature gain imbalance due to frequency selective quadrature baseband coupling in a transceiver of device. Radio frequency (RF) are converted to quadrature baseband signals, estimation is made as to coupling between in-phase (I) and quadrature-phase (Q) channels of the quadrature baseband signals. The quadrature baseband signals are converted into digital baseband signals, and digital compensation is applied on the digital baseband signal based on the estimated amount of coupling.
Abstract:
Aspects of this disclosure relate tuning an impedance presented to a common port of a multi-throw switch. The impedance can be tuned based on an impedance associated with a throw of the multi-throw switch that is activated. This can, for example, provide impedance matching for a duplexer port coupled to a throw of the multi-throw switch that is activated. According to embodiments of this disclosure, a shunt inductor in parallel with a tunable capacitance circuit can tune the impedance presented to the common port of the multi-throw switch. The shunt inductor and the tunable capacitance circuit can be coupled to a node in a signal path between an antenna switch and an antenna port in some embodiments.
Abstract:
Systems and related methods providing for determining activities of individuals are discussed herein. Circuitry may be configured to wirelessly receive tag signals from a plurality of RF location tags. Two or more of the RF location tags may be positioned on an individual, such as at positions that may at least partially define a human frame. The circuitry may be configured to correlate the two or more RF location tags with the individual. Location data for each of the two or more RF location tags may be determined based on the received tag signals. An activity of the individual may be determined based on the location data. In some embodiments, one or more activities involving multiple individuals may be determined based on RF location tags and sensors positioned on each of the multiple individuals. Furthermore, sensor data from the sensors may be communicated over the UWB channel.