Abstract:
Method for transmitting an information representative of the number of spreading codes allocated to the mobile stations in communication with a base station of a mobile telecommunication system,wherein it includes the step of:forming a word, said transmitted word, the content of which is representative of the number of spreading codes allocated,including in each transmission burst a general midamble resulting from the sum of selected midambles among all the available midambles, said selection being done by said base station in relation with said transmitted word so that a selected midamble corresponds to a binary element of said transmitted word equal to a first value and a non-selected midamble corresponds to a binary element of said transmitted word equal to second value,considering a received word the elements of which are in one-to-one relationship with the temporal positions of the estimations respectively corresponding to said available midambles.
Abstract:
A spread-spectrum receiver has a high-rate path to receive multi-rate channels and a low-rate path to receive fixed-rate channels. In a wideband code division multiple access (WCDMA) embodiment, the high-rate path despreads multi-rate physical channels having a variable spreading factor and the low-rate path despreads physical channels having a fixed spreading factor. The high-rate path may have high-rate rake fingers to despread multipath components of the multi-rate channels. Each multi-rate channel may have a different spreading code allowing for multicode reception. The high-rate path may also include a high-rate rake with finger engines implemented in hardware to multiply symbols with a channel estimation, and a combiner to combine the multipath components. The low-rate path may include low-rate fingers to despread multipath components of the fixed-rate channels and a processor to generate a channel estimation and coherently combine symbols from the low-rate fingers with the channel estimation.
Abstract:
One aspect of the invention simultaneously estimates data transmitted in a spread spectrum communication system using different spreading factors. A plurality of communication signals are received. Each communication signal has an associated code. At least two of the communication signals has a different spreading factor. The transmitted data is estimated as estimated symbols using codes of a uniform spreading factor. For data transmitted with a spreading factor other than the uniform spreading factor, the estimated symbols of that data is converted to symbols of the code of that data. Another aspect of the invention receives a spread spectrum communication signal having data spread using a plurality of spreading factors. The data of the communication is estimated as estimated symbols using codes of a uniform spreading factor. The estimated symbols are parsed into parcels, where the estimated symbols correspond to data transmitted with a same spreading factor. For parcels not of the uniform spreading factor, the estimated symbols are converted into symbols of the same spreading factor of that parcel.
Abstract:
In an information transmission method, a radio communications system, a base station and a mobile station, a TBS size, a modulation scheme and the number of codes in a multicode are converted into identification data having a relatively smaller data size before being transmitted to a destination of communication. The TBS size is identified by using, in combination, an identification code identifying a channelization code set, an identification code identifying a modulation scheme, and an identification code obtained by converting a combination of the number of codes in a multicode and a modulation pattern identification (TFRC) into a corresponding code. Accordingly, the data size for TBS size identification is reduced.
Abstract:
A method of managing processing resources in a mobile radio system, in which a first entity manages radio resources and corresponding processing resources, the latter being provided in a second entity separate from the first entity. The second entity signals to the first entity its global processing capacity, or capacity credit, and the consumption law, or quantity of the global processing capacity, or cost, for different spreading factor values. The first entity updates the capacity credit on the basis of the consumption law. In the case of multicode transmission using N spreading codes, the updating is effected on the basis of the cost for at least one of the N spreading codes.
Abstract:
An improvement for a method and system for tracking a spreading code, used in a code division multiple access (CDMA) system. An input signal has spread-spectrum modulation. The spreading code embedded in the spread-spectrum modulation has a plurality of chips. The input signal is sampled, and half-chip offset samples are formed from the sampled input signal. An even set of the half-chip offset samples are grouped into an early set of samples, and an odd set of the half-chip offset samples are grouped into a late set of samples. Each early set of samples is multiplied by the spreading code c(n+1), c(n+2), . . . , c(n+L), to generate a first plurality of products. L is approximately equal to the number of chips of delay between the earliest and latest multipath signals. A first plurality of sums and magnitudes are computed from the first plurality of products. The first plurality of magnitudes are summed to generate an early signal-energy value. Each late set of samples is multiplied by the spreading-code c(n−1), c(n−2), . . . , c(n−L), thereby generating a second plurality of products. A second plurality of sums and magnitudes are computed from the second plurality of products. The second plurality of magnitudes are summed to generate a late signal-energy value. A difference is calculated between the early signal-energy value and the late signal-energy value, thereby producing an error signal.
Abstract:
A base station for communicating with mobile stations in a coverage area of a wireless network. The base station adapts a coding rate of user data being transmitted to a first mobile station in a forward channel (e.g. a Supplemental Channel) in order to maximize the number of Walsh codes available for use in the base station. The base station adapts the coding rate by increasing the coding rate and then transmitting the user data at the increased coding rate using a longer Walsh code. The longer Walsh code and the increased coding rate are selected in order to meet a target data rate.
Abstract:
A system for rapidly acquiring a spreading code, used in a code division multiple access (CDMA) system, comprises a generator for generating a first long code and a second long code, with each long code having a length of N chips. The first long code is different from the second long code. A transmitter transmits the first long code and the second long code at a first phase angle and at a second phase angle, respectively, on a carrier signal over a communications channel using radio waves. The first long code and the second long code may be transmitted at an in-phase (I) angle and at a quadrature-phase (Q) angle, respectively, on the carrier signal. From the communications channel, an I acquisition circuit and a Q acquisition circuit may acquire, in parallel, the first long code and the second long code from the I angle and the Q angle, respectively, of the carrier signal by searching, in parallel, N/2 chips of the first long code and the second long code.
Abstract:
A service option overlay for a CDMA wireless communication in which multiple allocatable subchannels are defined on a reverse link by assigning different code phases of a given long pseudonoise (PN) code to each subchannel. The instantaneous bandwidth needs of each on-line subscriber unit are then met by dynamically allocating none, one, or multiple subchannels on an as needed basis for each network layer connection. The system efficiently provides a relatively large number of virtual physical connections between the subscriber units and the base stations on the reverse link for extended idle periods such as when computers connected to the subscriber units are powered on, but not presently actively sending or receiving data. These maintenance subchannels permit the base station and the subscriber units to remain in phase and time synchronism in an idle mode and also request additional channels. This in turn allows fast acquisition of additional subchannels as needed by allocating new code phase subchannels. Preferably, the code phases of the new channels are assigned according to a predetermined code phase relationship with respect to the code phase of the corresponding maintenance subchannel.
Abstract:
A code-division-multiple-access (CDMA) system employing spread-spectrum modulation. The CDMA system has a base station (BS), and a plurality of subscriber units. The signals transmitted between the base station and subscriber unit use spread-spectrum modulation. The improvement method for adaptive reverse power control (APC) from a subscriber unit (SU) to a base station (BS), comprises the steps of sending from the subscriber unit, using spread-spectrum modulation, a SU-spreading code on a reverse channel. The base station despreads the SU-spreading code on the reverse channel as a despread signal, determines a first power level Pd which includes power of the despread signal plus noise and a second power level PN, which includes despread-noise power. The base station determines a first error signal e1, from the first power level Pd, the second power level PN, and a required signal-to-noise ratio SNRREQ for service type, and a second error signal e2, from a measure of total received power Prt at the base station, and an automatic gain control (AGC) set point Po. The base station forms a combined error signal from the first error signal e1, the second error signal e2, a first weight a1, and a second weight a2, and hard limits the combined error signal to form a single APC bit. The APC bit is transmitted to the subscriber unit. In response to the APC bit, the subscriber adjusts transmitter power to the base station.