Abstract:
The present invention relates to thermally conductive, elastomeric pads. The pads can be made by injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
Abstract:
In a method for mounting an electronic part on a mounting substrate in that projection electrodes provided on the electronic part are welded by fusion to join connection terminals provided on the mounting substrate, the flux paste includes a base flux and metal grains having diameters smaller than the diameters of projection electrodes and having a thickness so as to form a space between the flux paste and the electronic part when the electronic part is mounted on the mounting substrate and the flux paste is arranged on the mounting substrate. A resin is sealed in the space formed between the electronic part and the mounting substrate after the projection electrodes are joined to the connection terminals.
Abstract:
A system and method are disclosed for providing a solder joint between a pair of electrical devices which have juxtapositionable solderable portions. A solder material is provided between the solderable portions at the solder joint. A spacer material is suspended in the solder material to maintain the electrical devices spaced a predetermined distance from each other at the solder joint. The spacer material has a melting point higher than that of the solder material.
Abstract:
A flip chip interconnect structure is formed on a bump pad of a chip, and includes an under bump metallurgy (UBM) formed on the bump pad, and a solder bump formed on the UBM. The solder bump includes tin and is further doped with metallic particles that are capable of reacting with tin in the solder bump to from an inter-metallic compound due to a thermal effect produced in use of a later fabrication process or an operation on the chip. Furthermore, the material of the metal particles is selected from a group consisting of copper, silver and nickel.
Abstract:
A method of making a high-density copper-clad multi-layered printed wiring board having a reliable through hole including providing a stacked assembly including three copper foil layers and at least two resin layers; providing an auxiliary material on a top surface of the stacked assembly and providing a backup sheet on a bottom surface of the stacked assembly to form an assembly; subjecting the top surface of the assembly to pulsed oscillation from a carbon dioxide laser to form at least one through-hole to produce a pulsed assembly; reducing the thickness of the front and reverse copper foil layers and simultaneously with reducing, removing copper foil burrs, to produce a cleaned assembly; and plating the cleaned assembly with copper to produce the high-density copper-clad multi-layered printed wiring board.
Abstract:
A structure and method thereof for providing an electrically conductive path between a first conductive point and a second conductive point. The structure includes an insulating material disposed between the first conductive point and the second conductive point. A dipole material is distributed within the insulating material. The dipole material is comprised of randomly oriented magnetic particles. The magnetic particles in a selected localized region of the insulating material are aligned to form an electrically conductive path between the first conductive point and the second conductive point through the insulating material.
Abstract:
A high dielectric composite material obtained by subjecting submicron particles of an inorganic filler containing a metal as its essential component to an insulating treatment such as a chemical treatment, further subjecting to a surface treatment for improving their compatibility with organic resins, and then dispersing in an organic resin, has a dielectric constant of 15 or above, with its dielectric loss tangent in the frequency region of from 100 MHz to 80 GHz being 0.1 or less, and can therefore be used effectively for multilayer wiring boards and module substrates.
Abstract:
A method of manufacturing a lead-free electrical solder paste having primary solder powder and an additive metal powder component that does not melt during the soldering process. Metal powders may be either elemental metal or a metal alloy. The primary powder is the same as is used in conventional solder paste. The additive powder has a melting point substantially higher than the melting point of the primary powder. The primary powder comprises between 80-99% Sn and 1-20% Ag. The additive powder metal is selected from the metal group comprising Sn, Ni, Cu, Ag, and Bi and mixtures thereof.
Abstract:
A lead-free super-highly conductive plastic is formed of a conductive resin composition which includes a thermoplastic resin, a lead-free solder that melts during plasticization, and metal powder or a mixture of metal powder and metal short fibers that promotes the fine dispersion of particles of the lead-free solder within the thermoplastic resin. In the lead-free super-highly conductive plastic, since particles of the lead-free solder are connected with each other via solder melted within the plastic, the particles of the lead-free solder are mutually joined, so that high conductivity is attained.
Abstract:
A method and system for forming contacts on semiconductor components, such as wafers, dice and packages, are provided. The method employs magnets to align and hold ferromagnetic balls on bonding sites of a component substrate. The system includes a holder for holding the component substrate, and magnets on the holder aligned with bonding sites on the component. The system also includes a ball placement mechanism for placing the ferromagnetic balls on the bonding sites, and a bonding mechanism, such as an oven, or a focused energy source, for bonding the ferromagnetic balls to the bonding sites. The ferromagnetic balls can be provided as a ferromagnetic core having an outer solder layer, as a solid ferromagnetic material with a conductive adhesive outer layer, or as ferromagnetic particles embedded in a bondable matrix material. An alternate embodiment system includes a focused magnetic source for dynamically aligning the ferromagnetic balls to the bonding sites.