Abstract:
Optical waveform observing apparatus including a sampling streak tube to which is applied an incident light beam having a waveform to be observed. An electron beam corresponding to the incident light beam is repetitively deflected in the streak tube, in response to a repetitive deflecting trigger signal, to sample the electron beam. The repetitive deflection of the electron beam is periodically stopped for a first time period. An integration circuit integrates data outputted by the streak tube. A subtraction circuit subtracts the integration of streak tube data outputted during the first time period from the integration of streak tube data outputted during a second time period when the repetitive beam deflection is not stopped, so that background noise and dark currents are not included in the subtraction result.
Abstract:
The duration of a very short semiconductor laser pulse, such as that ranging from a fraction to hundreds to picoseconds, can be measured utilizing the internally generated second harmonic emission of the laser. A laser diode is driven so that light emitted therefrom can pass through a beam splitter and be reflected by the beam-splitter into a photomultiplier and into a detector, respectively. Signals received therefrom relate to the conversion efficiency of the second harmonic emission generated by the picosecond pulses and of either continuous wave emission or pulse emission whose durations can be accurately measured by photodetectors. Apparatus includes a photodiode for measuring the fundamental laser power, a photomultiplier for measuring the second harmonic power, and appropriate filters. Ammeters coupled to the photodiode and photomultiplier measure the appropriate current. The ratio of the current can be determined by a ratio circuit or a computer.
Abstract:
An instrument concurrently measuring the ultra-high-speed light signals on a plurality of channels, and consisting of a streaking tube, optical means, deflection voltage generation means, a photodiode array and processing means. It can be used to periodically measure the mechanical distortion of the object being measured when a dye laser beam pulse is incident of the object, and time-serial data is developed on a plurality of channels to output parallel data on a parallel time base.
Abstract:
The temporal shape of optical pulses is measured over a wide dynamic range, for example, 10 orders of magnitude, by passing an optical signal corresponding to the autocorrelation function of the optical pulses through a variable attenuation filter, the position of which is a function of the attenuation. By plotting the attenuation of the filter in terms of the position thereof, against the duration of the temporal overlap of the pulses in a mixing crystal which produces the optical signal corresponding to the autocorrelation function, the temporal shape of the pulses is displayed.
Abstract:
AN OPTICAL AUTOCORRELATOR WHICH CVAN BE EMPLOYED TO INVESTIGATE OPTICAL PULSES HAVING DURATIONS OF THE ORDER OF 10-12 SECONDS IS DISCLOSED. THE AUTOCORRELATOR COMPRISES A SINGLE BRIEFRINGENT, NONLINEAR MEDIUM. OPTICAL PULSES ARE APPLIED TO THE MEDIUM SUCH THAT EACH PULSE IS RESOLVED INTO TWO ORTHOGONALLY POLARIZED COMPONENT PULSES TRAVELING WITH DIFFERENT GROUP VELOCITIES. BY CAUSING MULTIPLE REFLECTIONS OF THE PULSES BETWEEN A FIRST AND SECOND SURFACE OF THE MEDIUM, THE PULSES ARE MADE TOTRACE OUT A ZIGZAG PATH WITHIN THE MEDIUM. IN EACH TRAVERSAL FROM THE FIRST SURFACE TO THE SECOND SURFACE, THE PULSES GENERATE SECOND
HARMONIC POWER WHOSE TIME AVERAGE IS SUBSTANTIALLY PROPORTIONAL TO A POINT ON THE INTENSITY AUTOCORRELATION FUNCTION OF THE PULSES. SECOND HARMONIC DETECTORS, LOCATED AT THE REFLECTION POINTS ON THE SECOND SURFACE, DETECT THE SECOND HARMONIC POWER GENERATED, AND VARIOUS POINTS ON THE AUTOCORRELATION FUNCTION ARE THEREBY OBTAINED. THE LATTER FUNCTION CONTAINS ESSENTIALLY ALL THE INFORMATION ABOUT THE PULSES, E.G, THEIR WIDTH AND THEIR REPETITION RATE.
Abstract:
The present application relates to the field of detecting pulsed radiation, in particular to methods and apparatus suitable for use in detecting short pulse lasers and extracting their pulse repetition frequencies, and especially an improved computer implemented method for detecting a pulse repetition frequency of pulsed radiation using a sensor array of sensor elements arranged in element lines.
Abstract:
The present application relates to a real-time measurement method and system for ultrafast space-time-frequency three-domain information based on space-time-frequency compression. The method includes: generating an ultrafast-pulse optical signal in a to-be-observed physical system; performing intensity-modulated spatial encoding on the ultrafast-pulse optical signal; arranging, by a space-time editor, a time-domain series of an encoded ultrafast-pulse optical signal in a horizontal space direction; performing, by a frequency-space editor, frequency spectral processing on a space-time distribution encoding form of the encoded ultrafast-pulse optical signal; performing, by a frequency-time delayer, frequency-time delaying on an encoded space-time-frequency synchronized ultrafast-pulse optical signal; performing, by an area array detector, real-time compression and acquisition on a high-frequency-resolution encoded space-time-frequency synchronized ultrafast-pulse optical signal, to obtain compressed encoded data information; and decompressing and decoding data according to the compressed encoded data information, to obtain space-time-frequency three-domain synchronization information of the ultrafast-pulse optical signal.
Abstract:
The present document discloses a method for measuring the carrier-envelope phase, CEP, offset of ultrashort light pulses, the method comprising: generating an optical interference signal encoding the CEP offset of a light pulse to be measured; applying at least two spectral filters in parallel to the generated interference signal, wherein the transmission functions of the spectral filters are periodic and the at least two spectral filters have partial or fully orthogonal components among themselves; detecting each signal filtered by each of the at least two spectral filters to obtain a magnitude for each of the filtered signals; converting the two obtained magnitudes to a polar representation having a radius and an angle; outputting the CEP offset from the angle of the converted polar representation. It is also disclosed a corresponding system, a field-resolved spectrometer including the system and the use of the system in spectroscopy or in field-resolved spectroscopy.
Abstract:
Receiving antenna (1) for terahertz radiation (30), comprising an antenna conductor (2) and a first photoconductor (3) connected to the antenna conductor (2) and activatable by light (9), the first photoconductor (3) allowing, in an activated state, an antenna current (28) flowing through the antenna conductor (2) and the first photoconductor (3), characterized in that the receiving antenna (1) comprises at least one second photoconductor (4) connected to the antenna conductor (2) and activatable by light (9), the second photoconductor connected in parallel with the first photoconductor (3) and, in an activated state, allowing an antenna current (28) flowing through the antenna conductor (2) and the second photoconductor (4), wherein at least one respective high-pass filter (8) is connected between each of the photoconductors (3, 4) and the antenna conductor (2). The invention further relates to a receiver for terahertz radiation (30), a terahertz system, and a method for generating and detecting terahertz radiation (30) using such a terahertz system.
Abstract:
An optical pulse measuring method measuring an optical pulse generated from a pulse light source is provided. The method includes: splitting the optical pulse and then focusing them at a measuring point, so as to generate gas plasma by the autocorrelation of the split optical pulses; receiving the sound signal from the gas plasma and generate a plasma sound signal; and using the plasma sound signal to calculate the characteristics of the optical pulse. A measuring device is also provided.