Abstract:
A process for preparing an electride compound, comprising (i) providing a precursor compound comprising an oxidic compound of the garnet group; (ii) heating the precursor provided in (i) under plasma forming conditions in a gas atmosphere to a temperature of the precursor above the Hüttig temperature of the precursor, obtaining the electride compound.
Abstract:
The present invention is related to a process for preparing propylene oxide, comprising (i) providing a stream comprising propene, hydrogen peroxide or a source of hydrogen peroxide, water, and an organic solvent; (ii) passing the liquid feed stream provided in (i) into an epoxidation zone comprising an epoxidation catalyst comprising a titanium zeolite, and subjecting the liquid feed stream to epoxidation reaction conditions in the epoxidation zone, obtaining a reaction mixture comprising propene, propylene oxide, water, and the organic solvent; (iii) removing an effluent stream from the epoxidation zone, the effluent stream comprising propylene oxide, water, organic solvent, and propene; (iv) separating propene from the effluent stream by distillation, comprising (iv.1) subjecting the effluent stream to distillation conditions in a distillation unit, obtaining a gaseous top stream S0 enriched in propene compared to the effluent stream subjected to distillation conditions, and a liquid bottoms stream S01 enriched in propylene oxide, water and organic solvent compared to the effluent stream subjected to distillation conditions; (iv.2) returning a condensed portion of the stream S0 to an upper part of the distillation unit.
Abstract:
A process for preparing an aluminum-free boron containing zeolitic material comprising the framework structure MWW (BMWW), comprising (a) hydrothermally synthesizing the BMWW from a synthesis mixture containing water, a silicon source, a boron source, and an MWW template compound obtaining the BMWW in its mother liquor, the mother liquor having a pH above 9; (b) adjusting the pH of the mother liquor, obtained in (a) and containing the BMWW, to a value in the range of from 6 to 9; (c) separating the BMWW from the pH-adjusted mother liquor obtained in (b) by filtration in a filtration device.
Abstract:
The present invention relates to a process for the production of a boron-containing zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, wherein said process comprises (a) providing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (b) crystallizing the mixture obtained in (a) for obtaining a layered precursor of the boron-containing MWW-type zeolitic material, (c) calcining the layered precursor obtained in (b) for obtaining the boron-containing zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I): R1R2R3N, wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process as well as to its use.
Abstract:
A catalytic system containing a titanium zeolite of structure type MWW optionally containing zinc and containing at least one of an inorganic potassium salt and an organic potassium salt is provided. The catalyst system is useful in the preparation of propylene oxide.
Abstract:
The present invention relates to a process for the preparation of a zeolitic material comprising the steps of: (1) providing a mixture comprising one or more sources for YO2 and one or more alkenyltrialkylammonium cation R1R2R3R4N+-containing compounds as structure directing agent; and (2) crystallizing the mixture obtained in step (1) to obtain a zeolitic material; wherein Y is a tetravalent element, and wherein R1, R2, and R3 independently from one another stand for alkyl; and R4 stands for alkenyl, as well as to zeolitic materials which may be obtained according to the inventive process and to their use.
Abstract translation:本发明涉及一种制备沸石材料的方法,包括以下步骤:(1)提供包含一种或多种YO 2源和一种或多种烯基三烷基铵阳离子R 1 R 2 R 3 R 4 N +化合物作为结构导向剂的混合物; 和(2)使步骤(1)中获得的混合物结晶以获得沸石材料; 其中Y是四价元素,并且其中R 1,R 2和R 3彼此独立地代表烷基; 并且R4代表烯基,以及可以根据本发明方法获得的沸石材料及其用途。
Abstract:
A process for preparing an aluminum-free boron containing zeolitic material comprising the framework structure MWW (BMWW), comprising (a) hydrothermally synthesizing the BMWW from a synthesis mixture containing water, a silicon source, a boron source, and an MWW template compound obtaining the BMWW in its mother liquor, the mother liquor having a pH above 9; (b) adjusting the pH of the mother liquor, obtained in (a) and containing the BMWW, to a value in the range of from 6 to 9; (c) separating the BMWW from the pH-adjusted mother liquor obtained in (b) by filtration in a filtration device.
Abstract:
A process for the preparation of a titanium-containing zeolitic material having an MWW framework structure, the process comprising (i) providing a zeolitic material having an MWW framework structure comprising SiO2 and B2O3, (ii) incorporating titanium into the zeolitic material provided in (i) comprising (ii.1) preparing an aqueous synthesis mixture containing the zeolitic material provided in (i), an MWW template compound and a titanium source, (ii.2) hydrothermally synthesizing a titanium-containing zeolitic material having an MWW framework structure from the aqueous synthesis mixture prepared in (ii.1), obtaining a mother liquor comprising the titanium-containing zeolitic material having an MWW framework structure; (iii) spray-drying the mother liquor obtained from (ii.2) comprising the titanium-containing zeolitic material having an MWW framework structure.
Abstract translation:一种制备具有MWW骨架结构的含钛沸石材料的方法,该方法包括(i)提供具有包含SiO 2和B 2 O 3的MWW骨架结构的沸石材料,(ii)将钛掺入提供于( i)包括(ii.1)制备含有(i)中提供的沸石材料的水性合成混合物,MWW模板化合物和钛源,(ii.2)水热合成具有MWW骨架结构的含钛沸石材料 从(ii.1)中制备的水性合成混合物得到含有具有MWW骨架结构的含钛沸石材料的母液; (iii)喷雾干燥由(ii.2)得到的母液,该母液包含具有MWW骨架结构的含钛沸石材料。
Abstract:
A process for preparing acrylic acid, comprising (i) providing a stream S4 comprising a formaldehyde source and acetic acid; (ii) contacting stream S4 with an aldol condensation catalyst comprising a zeolitic material comprising aluminum in the framework structure to obtain a stream S6 comprising acrylic acid, the framework structure of the zeolitic material in (ii) comprising YO2 and Al2O3, and Y being a tetravalent element; where the total content of alkali metal and alkaline earth metal in the zeolitic material in (ii), calculated as alkali metal oxide and alkaline earth metal oxide, is from 0% to 0.1% by weight, based in each case on the total weight of the zeolitic material, and where the aldol condensation catalyst in (ii) comprises, outside the framework structure of the zeolitic material present therein, from 0% to 1% by weight of vanadium, based on vanadium as vanadium(V) oxide.
Abstract translation:一种制备丙烯酸的方法,包括(i)提供包含甲醛源和乙酸的料流S4; (ii)使流体S4与包含框架结构中包含铝的沸石材料的醛醇缩合催化剂接触以获得包含丙烯酸的流S6,(ii)中的沸石材料的框架结构包含YO 2和Al 2 O 3,Y是 四价元素 其中(ii)中的沸石材料中的碱金属和碱土金属的总含量以碱金属氧化物和碱土金属氧化物计算为0〜0.1重量%,基于每种情况下的总重量 沸石材料,并且其中(ii)中的醛醇缩合催化剂在其中存在的沸石材料的骨架结构外包含以钒为氧化钒(V)的钒为0至1重量%的钒。
Abstract:
A process for the post-treatment of a zeolitic material having a BEA framework structure, the process comprising (i) providing a zeolitic material having a BEA framework structure, wherein the framework structure of the zeolitic material comprises X2O3 and YO2, wherein Y is a tetravalent element and X is a trivalent element and wherein the molar ratio X2O3:YO2 is greater than 0.02:1; (ii) treating the zeolitic material provided in (i) with a liquid solvent system thereby obtaining a zeolitic material having a molar ratio X2O3:YO2 of at most 0.02:1, and at least partially separating the zeolitic material from the liquid solvent system; (iii) treating the zeolitic material obtained from (ii) with a liquid aqueous system having a pH in the range of 5.5 to 8 and a temperature of at least 75° C.
Abstract translation:一种用于后处理具有BEA骨架结构的沸石材料的方法,该方法包括(i)提供具有BEA骨架结构的沸石材料,其中沸石材料的骨架结构包含X 2 O 3和YO 2,其中Y为 四价元素,X是三价元素,其中X 2 O 3 :YO 2的摩尔比大于0.02:1; (ii)用液体溶剂系统处理(i)中提供的沸石材料,从而获得摩尔比X2O3:YO2至多0.02:1的沸石材料,并至少部分地将沸石材料与液体溶剂系统分离; (iii)用pH值在5.5至8范围内和至少75℃的温度的液体水系统处理由(ii)得到的沸石材料。