Abstract:
A valve operating mechanism for operating a plurality of valves of a particular cylinder of an internal combustion engine includes a camshaft rotatable in synchronism with rotation of the internal combustion engine and having at least one cam. At least one of a plurality of cam followers slidably engages the cam for selectively operating the valves according to a cam profile of the cam. The cam followers are selectively interconnected and disconnected to operate the valves in different speed ranges of the internal combustion engine, the speed ranges including a range in which all of the valves remain inoperative. The camshaft has one or two annular raised portions in addition to the cam, and the cam followers include one or two cam followers which slidably engage the raised portion or portions. The valves remain inoperative by the annular portion or portions and are operated in a high-speed range by the cam, or selectively in low- and high-speed ranges by low- and high-speed ranges.
Abstract:
A valve operating mechanism for operating a plurality of valves of an internal combustion engine includes a camshaft rotatable in synchronism with rotation of the internal combustion engine and having an array of three cams including a high-speed cam positioned at one end of the array. Three cam followers are held in sliding contact with the cams, respectively, for operating the valves according to cam profiles of the cams. The cam followers are selectively interconnected and disconnected to operate the valves at different valve timings in different speed ranges of the internal combustion engine. The speed ranges include a high-speed range in which all of the valves are controlled by the cam profile of the high-speed cam. The three cams may include low- and medium-speed cams, or two identical or different low-speed cams, in addition to the high-speed cam. These cams may be differently arranged in the array, and the cam followers include those which slidably engage one or two of the cams for operating the valves. The valves are operated selectively in low- and high-speed ranges, or in low-, medium-, and high-speed ranges, with different combinations of the cams.
Abstract:
A valve operating mechanism for operating a pair of valves of an internal combustion engine, includes a camshaft rotatable in synchronism with rotation of the internal combustion engine and having a first low-speed cam, a second low-speed cam, and a high-speed cam which have different cam profiles, respectively, the first and second low-speed cams being disposed one on each side of the high-speed cam, a rocker shaft, and first, second, and third rocker arms rotatably mounted on the rocker shaft and held in sliding contact with the first low-speed cam, the second low-speed cam, and the high-speed cam, respectively, for operating the valves according to the cam profiles of the cams. A selective coupling is operatively disposed in and between the first, second, and third rocker arms for selectively interconnecting the first, second, and third rocker arms to allow angular movement thereof in unison and disconnecting the first, second, and third rocker arms to allow separate angular movement thereof.
Abstract:
In an control apparatus for controlling a timing of injection of fuel to be injected into an internal combustion engine, the apparatus comprises a closed loop system in which the data showing the actual timing of injection of of fuel is fed back. When the condition of the operation of the engine becomes a predetermined state, the control system is changed from the closed loop system to another system in which an adjusting member for adjusting the timing of injection of fuel is controlled by a signal which is not related to the actual timing of injection. As a result, the stability of the operation in low engine speed zone is remarkably improved.
Abstract:
An electronic fuel injection control system for use with an internal combustion engine, which includes means for generating at least one kind of coefficient for correcting the value of basic fuel injection quantity data on the basis of output values of means for detecting engine operating condition parameters inclusive at least of engine temperature, and also includes means for setting the value of the above correction coefficient to a value corresponding to a predetermined value of an engine operating condition parameter concerned which falls within a range within which the value of the same parameter is variable during normal engine operation, when an output value of the detecting means becomes outside a range within which the same output value is variable during normal operation of the engine.
Abstract:
A two wheel vehicle comprising a vehicle body having a front wheel and a rear wheel with an internal combustion engine mounted on the mid portion of the frame is provided. The engine is provided with a supercharger having an exhaust turbine provided on an exhaust passage side thereof and a compressor provided on an intake passage side thereof and arranged to move with the turbine. The supercharger is positioned in a space defined by the engine and a supporting frame which supports the engine and is interposed between the engine and the front wheel. The defined space is remote from the driver so that the driver is not affected by the supercharger. The supercharger may be mounted on the supporting frame so that it is protected against external frontal or lateral forces.
Abstract:
Reduction of NO.sub.x emissions from a four-cycle stratified charge internal combustion piston engine is accomplished by (a) spark ignition of a rich mixture in a first chamber containing residual exhaust gas, followed by (b) torch ignition of rich mixture in a second chamber under turbulent conditions, causing (c) torch ignition of a stratified charge in a lean mixture in the main combustion chamber. The result is a reduction in peak temperature in the combustion process, with consequent reduction in NO.sub.x emissions in the engine exhaust gases. Exhaust gas is not recirculated. Said first chamber, which contains residual gas from the previous combustion cycle, contains the spark gap between spark plug electrodes and the spark gap is located near a restricted connection between the first and second chambers and remote from a closed end of the first chamber. Means are provided for changing the volume of said first chamber while the engine is operating, in accordance with variations in load on the engine.
Abstract:
A disk substrate molding apparatus has a disk substrate molding die and a temperature controller. The disk substrate molding die includes a stamper, a first die including a mirror member to which the stamper comes in contact, and a second die including a molding surface which forms a disk-shaped cavity between the molding surface and the stamper. The second die includes a protruding part which protrudes toward the stamper at an outer circumferential part of the molding surface. The temperature controller controls temperature of the second die so that the protruding part exhibits a higher temperature in comparison to a region further toward the inner circumferential side than the protruding part, and controls temperature of the first die so that a region opposite to the protruding part exhibits a lower temperature in comparison to the protruding part in the mirror member.
Abstract:
A disk substrate molding apparatus has a disk substrate molding die and a temperature controller. The disk substrate molding die includes a stamper, a first die including a mirror member to which the stamper comes in contact, and a second die including a molding surface which forms a disk-shaped cavity between the molding surface and the stamper. The second die includes a protruding part which protrudes toward the stamper at an outer circumferential part of the molding surface. The temperature controller controls temperature of the second die so that the protruding part exhibits a higher temperature in comparison to a region further toward the inner circumferential side than the protruding part, and controls temperature of the first die so that a region opposite to the protruding part exhibits a lower temperature in comparison to the protruding part in the mirror member.
Abstract:
A sheet-like probe has a porous film. In the sheet-like probe, a contact film is penetratingly supported at each position of through-holes formed in the porous film, and a peripheral edge of the contact film and the porous film are integrated such that a flexible resin insulation layer is included in a fine hole of the porous film. Electrode structure bodies are supported in a penetrating manner in the insulation layer. Each electrode structure body includes a surface electrode section exposed to the front surface of the insulation layer and projecting from the front surface of the insulation layer, a back surface electrode section exposed to the back surface of the insulation layer, a short-circuit section continuously extending from the base end of the front surface electrode section, penetrating the insulation layer in its thickness direction, and connected to the back surface electrode section, a holding section extending outward, along the front surface of the insulation layer, from the base end section of the front surface electrode section, and a supporting body supporting the insulation layer.