Abstract:
A semiconductor structure is located in a recess of a substrate. The semiconductor structure includes a liner, a silicon rich layer and a filling material. The liner is located on the surface of the recess. The silicon rich layer is located on the liner. The filling material is located on the silicon rich layer and fills the recess. Furthermore, a semiconductor process forming said semiconductor structure is also provided.
Abstract:
A method for forming an isolation structure includes the following steps. A hard mask layer is formed on a substrate and a trench is formed in the substrate and the hard mask layer. A protective layer is formed to cover the trench and the hard mask layer. A first isolation material is filled into the trench. An etching process is performed to etch back part of the first isolation material.
Abstract:
A method of fabricating a dielectric layer includes the following steps. At first, a dielectric layer is formed on a substrate, and a chemical mechanical polishing (CMP) process is performed on the dielectric layer. Subsequently, a surface treatment process is performed on the dielectric layer after the chemical mechanical polishing process, and the surface treatment process includes introducing an oxygen plasma.
Abstract:
The present invention relates to a method of forming an isolation structure, in which, a trench is formed in a substrate through a hard mask, and deposition, etch back, deposition, planarization, and etch back are performed in the order to form an isolation material layer of the isolation structure after the hard mask is removed. A silicon layer may be formed to cover the trench and original surface of the substrate before the former deposition, or to cover a part of the trench and original surface of the substrate after the former etch back and before the later deposition, to serve as a stop layer for the planarization process. Voids existing within the isolation material layer can be exposed or removed by partially etching the isolation material layer by the former etch back. The later deposition can be performed with a less aspect ratio to avoid forming voids.
Abstract:
A method for fabricating a transistor device including the following processes. First, a semiconductor substrate having a first transistor region is provided. A low temperature deposition process is carried out to form a first tensile stress layer on a transistor within the first transistor region, wherein a temperature of the low temperature deposition process is lower than 300 degree Celsius (° C.). Then, a high temperature annealing process is performed, wherein a temperature of the high temperature annealing process is at least 150° C. higher than a temperature of the low temperature deposition process. Finally, a second tensile stress layer is formed on the first tensile stress layer, wherein the first tensile stress layer has a lower tensile stress than the second tensile stress layer.
Abstract:
A method of manufacturing semiconductor device is provided. A substrate at least with a patterned silicon-containing layer on the substrate and spacers adjacent to the patterned silicon-containing layer is provided. A metal layer is formed on the substrate and covers the patterned silicon-containing layer and spacers. Then, a capping layer is formed on the metal layer. A first rapid thermal process is performed to at least make a portion of the metal layer react with the substrate around the spacers to form transitional silicides. The capping layer and the unreacted portions of the metal layer are removed. A first nitride film with a first tensile stress S1 is formed on the substrate. A second rapid thermal process is performed to transfer the transitional silicide to a silicide and transfer the first nitride film to a second nitride film with a second tensile stress S2, wherein S2>S1.