Abstract:
A demodulation sensor (30) is described for detecting and demodulating a modulated radiation field impinging on a substrate (31). The sensor comprises the means (1,7,15) for generating, in the substrate, a static majority current assisted drift (Edrift) field, at least one gate structure (33) for collecting and accumulating minority carriers (21), the minority carriers generated in the substrate by the impinging radiation (28) field. The at least one gate structure comprises at least two regions (4,9,18) for the collection and accumulation of the minority carriers (21) and at least one gate (5,6,8) adapted for inducing a lateral electric drift field under the gate structure, the system thus being adapted for directing the minority carriers (21) towards one of the at least two regions (4,9) under influence of the static majority current assisted drift field and the lateral electric drift field induced by the at least one gate, and a means for reading out the accumulated minority carriers in that region.
Abstract:
A stress sensor (1) for detecting mechanical stress in a semiconductor chip (2) has a Wheatstone bridge formed by four integrated resistors R1 to R4, the resistors R1 and R4 being p-type resistors and the resistors R2 and R3 being n-type resistors.
Abstract:
A thermal sensor array device (100) comprises a substrate having a cavity (291) formed therein. An infrared absorbing membrane (200) is suspended over the cavity from a first and second beams (202, 206), the first beam (202) being thermally coupled at one end thereof to the substrate (Cj1) at a first cold junction and the second beam (206) being thermally coupled at one end thereof to a second substrate cold junction (Cj2). Thermocouples are disposed over the first and second beams (202, 206) and on the membrane (200). The thermocouples are arranged on the first and second beams (202, 206) and the membrane (200) as first and second thermopiles (300, 320). The first and second thermopiles (300, 320) are arranged on the membrane (200) to measure a sum of first temperature differentials between the first substrate cold junction (Cj1) and a hot junction (Hj) on the membrane (200), and second temperature differentials between the second substrate cold junction (Cj2) and the hot junction (Hj) on the membrane. The first thermopile (300) is configured to connect selectively to the second thermopile (320) in series and anti-series.
Abstract:
An optical range calculation apparatus (100) comprises a light source configured to emit light in accordance with an indirect time of flight measurement technique. A photonic mixer cell (102) is configured to generate and store a plurality of electrical output signals respectively corresponding to a plurality of predetermined phase offset values applied (112) in accordance with the indirect time of flight measurement technique. A signal processing circuit (110, 124) is configured to process the plurality of electrical output signals in accordance with the indirect time of flight measurement technique in order to calculate a measurement vector and a measured phase angle from the measurement vector. The signal processing circuit (110, 124) is configured to calculate a phase angle correction value using reference illumination data and to apply the calculated phase angle correction value in order to correct the measured phase angle, and the signal processing circuit is configured to calculate a range using the corrected measured phase angle.
Abstract:
A pressure sensing element (100) for a pressure sensor device comprises a substrate portion (102) comprising a cavity (104) formed therein, a mouth (184) of the cavity (104) having an opening periphery (186). A membrane layer (106) overlies the opening periphery (186) of the cavity (104), and a strain gauge element (166, 168, 170, 172) is disposed on the membrane layer (106) over the cavity (104). The cavity (104) comprises a primary cavity (118) and a first annex (120) integrally formed with the primary cavity (118).
Abstract:
A method of manufacturing a thermal sensor (106) comprises providing a first part (102) of a body of the sensor (106), the first part (102) of the body being configured to define a first part (114) of a chamber (310). A second part (104) of the body of the sensor (106) is also provided, the second part (104) of the body being configured to define a second part (118) of the chamber (310). A getter material (112) is disposed in the first part (114) of the body of the sensor (106), and the first part (102) and the second part (104) of the body of the sensor (106) are brought together so that the first and second parts (102, 104) of the chamber (310) define the chamber (310). The chamber (310) is backfilled with a gas to a pressure greater than 10 mbar, and the first part (102) of the body is bonded to the second part (104) of the body so as to seal hermetically the chamber (310).
Abstract:
A sensor package comprises an active element with a first region and an opposite second region. The first region includes a sensing structure. The second region comprises at least one contact pad. A moulding compound encapsulates the second region and not the first region. The active element comprises at least one conductive line for routing signals from the sensing structure to the contact pad. The projection of the conductive line over the active element corresponds to a portion of the external surface of the active element. The active element comprises at least one dummy track providing a protrusion thereby raising a portion of the surface of the active element to at least the same height as the portion corresponding to the conductive line. These protrusions can receive mechanical pressure from a moulding insert applied during manufacture, relieving pressure over the portion of the surface including the conductive lines.
Abstract:
An indirect time of flight range calculation apparatus comprises a light source, a photonic mixer that generates a plurality of output signals corresponding to a first plurality of phase values. A signal processor is also provided to calculate a first vector and a first angle from the first vector. The photonic mixer generates a second plurality of electrical output signals corresponding to a second plurality of phase values. Each phase value of the second plurality of phase values is respectively offset with respect to each phase value of the first plurality of phase values by a predetermined phase offset value. The signal processor processes the second plurality of electrical output signals in order to calculate a second vector, and de-rotates the second vector calculated and calculates a second angle from the de-rotated vector before offsetting the second angle against the first angle, thereby generating a corrected output angle.
Abstract:
A unit trench capacitor in a substrate includes one or more trenches in the substrate, a dielectric layer, a first electrode and a second electrode. Walls of the one or more trenches are covered by the dielectric layer which separates the first electrode from the second electrode. Each trench follows a closed curve. The closed curve of each trench has one or more elongated parts in directions in which the substrate has a maximum elastic modulus, or the closed curve of each trench has a circular shape if the substrate has an isotropic elastic modulus.
Abstract:
A method of operating a plurality of driving units for powering electronic units is described. The method includes interchanging a data frame including a bit sequence, between a master control unit and at least one of a plurality of driving units at slave nodes. The method includes applying an ID field for addressing at least one driving unit, and applying a data field comprising information and/or instructions regarding the status of the electronic units. Applying the ID field comprises indicating the driving unit address using a first bit sub-string comprising N bits, allowing the master control unit to identify whether data should be received or transmitted, performing a data length decoding step, and adding a further bit string to the data field including information for carrying out an action by the driving unit.