Abstract:
The present invention relates to a method of continuously producing a phosphor at a supercritical water (SCW) condition and an apparatus used in the method. A phosphor produced according to the method of the present invention has similar luminosity to a phosphor produced according to a conventional solid-state method and the size and shape of particles thereof is also uniform. Accordingly, a phosphor according to the method of the present invention is applicable in various fields such as plasma display (PDP) and field emission display (FED). Also, in the method of producing a phosphor according to the present invention, the total reaction time is within about one minute, which is shorter than in the solid-state method. Also, since a separate heat processing process is not needed to obtain crystallized particles, it is efficient in aspects of time and energy.
Abstract:
A method for producing fullerenes, characterized in that said method includes a step (a) of contacting an aromatic compound-containing starting material with a supercritical fluid or a subcritical fluid in the presence of a transition metal element-containing catalyst at a temperature in a range of from 350 to 800° C. and at a pressure in a range of from 3 to 50 MPa. Said supercritical fluid or said subcritical fluid is formed from one or more kinds of materials selected from the group consisting of an aromatic compound as said starting material, a solvent for said aromatic compound, a solvent for said catalyst, water, dinitrogen monoxide, and ammonia.
Abstract:
Gases are vented from a waste site such as a landfill, and the gases are separated into at least three streams comprising a hydrocarbon stream, a carbon dioxide stream, and residue stream. At least a portion of the carbon dioxide stream and hydrocarbon stream are liquefied or converted to a supercritical liquid. At least some of the carbon dioxide gas stream (as a liquid or supercritical fluid) is used in a cleaning step, preferably a polymer cleaning step, and more preferably a polymer cleaning step in a polymer recycling process, and most preferably in a polymer cleaning step in a polymer recycling system where the cleaning is performed on-site at the waste site.
Abstract:
A method for carrying out the continuous polymerization of a monomer in a carbon dioxide reaction medium comprises the steps of: (a) providing an apparatus including a continuous reaction vessel and a separator; (b) carrying out a polymerization reaction in the reaction vessel by combining a monomer and a carbon dioxide reaction medium therein (and preferably by also combining an initiator therein), wherein the reaction medium is a liquid or supercritical fluid, and wherein the reaction produces a solid polymer product in the reaction vessel; then (c) withdrawing a continuous effluent stream from the reaction vessel during the polymerization reaction, wherein the effluent stream is maintained as a liquid or supercritical fluid; then (d) passing the continuous effluent stream through the separator and separating the solid polymer therefrom while maintaining at least a portion of the effluent stream as a liquid or supercritical fluid; and then (e) returning at least a portion of the continuous effluent stream to the reaction vessel while maintaining the effluent stream as a liquid or supercritical fluid. The need for significant recompression of the continuous effluent stream prior to return to the reaction vessel is thereby minimized. Apparatus for carrying out such methods is also disclosed.
Abstract:
The present invention includes a process for preparing an improved catalyst having the steps of admixing compounds containing the components of the catalyst and at least one solvent to form a precursor; extracting the precursor with a supercritical stream to form a processed precursor, where the extracting step includes drying the precursor, atomizing the precursor, and combinations thereof; and calcining the processed precursor to form a catalyst. The process may include drying the precursor by introducing the precursor, which has been previously washed with an alcohol, such as ethanol or methanol, into a vessel and introducing the supercritical stream at a pressure and temperature above the critical point of the stream into the vessel. The process may include drying and atomizing the precursor by introducing the supercritical solvent into the vessel at a pressure and a temperature above critical point of the solvent and introducing the precursor into the extraction vessel through a nozzle. The process may also include drying and atomizing the precursor by introducing the precursor and the supercritical solvent into the vessel through a nozzle.
Abstract:
A method and device for oxidization of materials in supercritical water. The method involves a) introducing a fluid containing water and an oxidizing agent in a ring-shaped area and through a first end of a substantially tube-shaped reactor comprising an external wall and an internal tube, b) heating the fluid in the ring-shaped area, c) introducing the heated fluid into the internal tube and simultaneously introducing material to be treated into said internal tube at a second end of the reactor, d) mixing the fluid and the material to be treated in a first portion of the internal tube, followed by cooling the obtained mixture in a second portion of the internal tube, and e) isobarically discharging the fluid/oxidized material from the internal tube of the reactor.
Abstract:
The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
Abstract:
A treatment apparatus for organic waste including a reaction vessel for introducing and decomposing organic waste and pulling out decomposed organic waste as a treated fluid. The reaction vessel includes an internal vessel made of corrosion-resistant material, an external vessel made of pressure-resistant material provided for surrounding the internal vessel via a gap, and an interconnection pipe for interconnecting the gap and the internal vessel outside the external vessel, thereby to control inside the gap and inside the internal vessel to practically equal pressure. The internal vessel has a heating zone for heating the introduced organic waste to a temperature higher than a critical point of water, a reaction zone for holding and decomposing the organic waste at a temperature higher than the critical point of water, and a cooling zone for cooling the treated fluid containing a decomposition product of the organic waste to lower than 100° C. The gap is adapted to be charged with high-pressure water or hydrogen peroxide water.
Abstract:
A chuck assembly for holding a sample includes a shaft; a generally circular chuck member, the shaft extending from a first surface of the chuck member; and a sample holder associated with a second surface of the chuck member. The second surface is opposite the first surface. A sample receiving assembly holds the sample on the sample holder so that the sample remains fixed to the sample holder when the shaft rotates and causes the chuck member and the sample holder to rotate with the shaft. The chuck assembly may be used in a reactor assembly including a reactor chamber for receiving the chuck assembly; a spindle assembly for receiving an end of the shaft distal from the chuck member; and a motor for rotating the spindle assembly and the shaft so that fluid in the chamber flows generally along the shaft in a first direction and through the openings in the chuck member, around the sample holder, and then along a wall of the chamber in a second direction generally opposite to the first direction.
Abstract:
A gas or mixture of gases is produced by decomposition or chemical reaction of liquid precursor(s). The gas may be converted to a dense phase gas or supercritical fluid state which can be used as a medium for chemical reaction, chromatography, extraction or impregnation/modification. Changes in the gas composition may be made simply by modification of the metered flow rates or chemical composition of the liquid precursor(s).