Abstract:
A process for obtaining one or more than one salt of an organic acid(s), or organic acid(s), from an aqueous sugar stream comprising one or more than one mineral acid and the organic acid(s) is provided. The process comprises introducing the aqueous sugar stream to a separation system comprising one or more beds of anion exchange resin and obtaining a stream therefrom comprising the sugar. The one or more beds of anion exchange resin are then regenerated in one or more stages to produce at least one product stream comprising the organic acid, a salt of the organic acid, or a combination thereof, and a separate outlet stream comprising the mineral acid, a salt of the mineral acid, or a combination thereof. The product stream is then recovered. The separation may be conducted with two separation units, or using a single anion exchange unit.
Abstract:
A chelate complex is removed from a chemical which is used in a semiconductor production process and contains a compound having a chelating ability, and the cleaning load is also reduced. Specifically disclosed is a method for purifying a chemical which is used in a semiconductor production process and contains a compound having a chelating ability, wherein a chelate complex which is formed from impurity metals such as nickel and copper contained in an alkaline chemical is removed from the chemical by treating the alkaline chemical with an organic complex adsorbing material.
Abstract:
A method for removing fluorine gas from a selected environment comprises contacting the fluorine gas with water to generate a solution of hydrofluoric acid and contacting the solution of hydrofluoric acid with an ion exchange resin having an active state operative to exchange selected ions therein for fluoride ions in the solution. The apparatus (200) may include a dual resin setup (222, 223) such that one of the ion-exchange resin can be in the service cycle while the other of the ion-exchange resins undergoes the regeneration and rinse/refill cycles.
Abstract:
The present invention provides a process for preparing highly pure Temozolomide base which includes recovery from the purification mother liquors by using an anionic exchange resin. By treating Temozolomide hydrochloride with a mixture of an organic acid, a water miscible organic solvent, and water, Temozolomide free base is obtained in an acidic medium. Due to the high sensitivity of Temozolomide to basic pH values the recovery-including process is especially advantageous because it enables obtaining high yields of highly pure Temozolomide base in acidic conditions.The process for producing Temozolomide base includes hydrolysis of the starting material 8-cyano-3-methyl-[3H]-imidazo[5,1-d]-tetrazin-4-one in acidic medium to obtain highly pure Temozolomide hydrochloride in high yield.
Abstract:
A method of making a sulphided ion exchange resin from an ion exchange resin containing primary or secondary amino group comprises passing a non-aqueous liquid, e.g. a hydrocarbon, feedstock containing elemental sulphur or organic, or inorganic, di-or poly-sulphides through a bed of an ion exchange resin containing primary or secondary amino groups, and so unsulphided ion exchange resins containing primary or secondary amine groups may be used to remove such elemental sulphur or sulphur compounds from liquid, e.g. hydrocarbon, feedstocks. The sulphided ion exchange resins may be used to remove elemental mercury or organic mercury compounds from liquid, e.g. hydrocarbon, streams.
Abstract:
An object of the present invention is to provide an optical measurement apparatus equipped with an ion-exchange resin for pretreating a sample, thereby enabling the concentration of component in the sample to be measured with higher accuracy. The optical measurement apparatus of the present invention includes, in addition to the ion-exchange resin, an optical measurement section for measuring, based on the optical characteristics of the component, the concentration of the component in the sample after the sample is passed through the ion-exchange resin.
Abstract:
The present invention relates to macroporous, monodisperse boron-selective ion exchangers having improved boron uptake kinetics and improved boron capacity, containing N-methylglucamine structures, having a median diameter D between 550 and 750 μm and a volumetric fraction of beads between 0.9 D and 1.1 D of at least 75%.
Abstract:
The invention is directed to the use of weak anion exchange (WAX) materials for trapping of negative and zwitterionic interferences from biological matrices, and then reduction of the biological matrix effect in the quantitative analysis process of basic and neutral compounds present in the matrix. The sample preparation process includes adding the WAX cleanup step before or after or during the conventional extraction procedures like liquid-liquid extraction, protein precipitation, solid phase extraction and others. Such a step greatly enhances the selectivity of the extraction process via the removal of the majority of the contaminants and reduces the matrix effect in the quantitative analysis. In addition, the WAX-enhanced extraction is very simple, versatile, rug and easy to be operated.
Abstract:
Systems, methods and compositions for the purification, separation and analysis of anionic compounds, including polyanionic compounds are disclosed.
Abstract:
A water treatment device and method for treating a quantity of water is powered by gravitational flow. The device includes an upper collecting chamber (14) and a filtration chamber (18). The filtration chamber includes a set of reactance containg at least three components wherein one of the components is a polycation and another one of the components is a polyanion. The method includes subjecting the water to gravitational flow through the filtration chamber (18).