Abstract:
A nitric oxide gas generator which includes a body having a dilution inlet chamber, a chemical mixing chamber, and a dilution outlet chamber. A dilution inlet for diluent gases is provided into the dilution inlet chamber. An inlet is provided to permit entry of the diluent gases into the chemical mixing chamber. An outlet is provided to permit the exit of diluted nitric oxide gas from the chemical mixing chamber to the dilution outlet chamber. A dilution outlet is provided for removal of diluted nitric oxide gas from the dilution outlet chamber. Supports are provided for supporting chemicals to be reacted to produce nitric oxide gas. A heat source is provided to heat the chemical mixing chamber in which chemicals are mixed to initiate a chemical reaction that produces nitric oxide gas.
Abstract:
A safe, reduced pressure apparatus for generating water vapor from hydrogen and oxygen and feeding high purity moisture to processes such as semiconductor production. The apparatus eliminates the possibility of the gas igniting by maintaining the internal pressure of the catalytic reactor for generating moisture at a high level while supplying moisture gas from the reactor under reduced pressure. A heat dissipation reactor improvement substantially increases moisture generation without being an enlargement in size by efficient cooling of the reactor alumite-treated fins.
Abstract:
A gas generator system is provided wherein supply sources for halogenated gases, including pure molecular halogens, are connected into a gas reaction chamber, or chamber system, to enable generation of a predetermined gas for localized use in a subsequent process. The reaction chamber has a valved outlet for direct supply of the generated gas to a single or multiple chamber processing tool or process chamber. Thus it is possible, for example, to provide for the localized generation of reactive process gases.
Abstract:
A method for the production of a hydrogen-containing gas composition, such as a synthesis gas including hydrogen and carbon monoxide. The molar ratio of hydrogen to carbon monoxide (H2:CO) in the synthesis gas can be well-controlled to yield a ratio that is adequate for the synthesis of useful products such as methane or methanol, without the need to remove carbon oxides from the gas stream to adjust the ratio.
Abstract:
The present invention provides a device for modifying an atmosphere in proximity to the device, the device comprising a sachet comprising a semipermeable material, and a composition including a mixture of acetylsalicylic acid and sodium bicarbonate contained within a cavity of the sachet. The invention further provides methods for modifying an atmosphere comprising placing a mixture of a carboxylic acid and a base in the atmosphere, wherein the atmosphere has a sufficient level of water vapor such that, upon contact of the water vapor with the mixture, carbon dioxide is produced.
Abstract:
A thermally efficient resistive heater assembly for heating a source substance for generation of gas has a chamber for containing the source substance, a thin resistive heating element suspended across an aperture and disposed for immersion in the source substance, and conductive traces electrically coupled to the thin resistive heating element. The resistive heater assembly may be fabricated by a specially adapted method including providing a first substrate layer, bonding to it a second substrate layer, the second substrate layer bearing the resistive heating element and conductive traces, bonding to that an optional hydrophobic layer if necessary, and bonding to the previous layer a top layer. At least one of the layers may include manifolding for the gas. All or part of the fabrication method may be performed as a reel-to-reel process.
Abstract:
According to one embodiment of the invention, a gas generator system includes a combustion chamber having an insulation coupled to an inside surface thereof, a retort having a catalyst therein disposed within the combustion chamber, and an access door coupled to a side of the combustion chamber. The access door allows removal of the retort from the side of the combustion chamber. According to another embodiment of the invention, a gas generator system includes a combustion chamber having an insulation coupled to an inside surface thereof, a retort having a catalyst therein disposed within the combustion chamber, and a recuperator disposed proximate an open bottom of the combustion chamber. The recuperator prevents secondary combustion air from traveling in a direct path into the combustion chamber from outside the open bottom of the combustion chamber and raises the temperature of the secondary combustion air.
Abstract:
The present invention is drawn to the electrolysis of fluids in a lab-on-a-chip environment for generating gases. Various lab-on-a-chip embodiments are described along with a method of generating gas in a lab-on-a-chip environment. The method comprises the steps of (a) providing a substrate having active circuitry thereon, at least a portion of said active circuitry being readable by a computer; (b) providing an electrolytic cell configured for communication with the active circuitry, said electrolytic cell comprising an anode and a cathode in an electrolytic fluid bath; and (c) generating a gas in the electrolytic fluid bath by creating an electrical potential between the anode and the cathode through the electrolytic fluid bath.
Abstract:
A gas generator for generating a hydrogen-rich carbon-monoxide-lean gas from a water-fuel mixture by catalytic steam reforming and/or from an oxygen-fuel mixture by partial oxidation includes at least one fuel reservoir vessel; a reforming reactor; a CO shift reactor; a gas purifying unit; and a line to feed water from a water reservoir vessel into the reformate gas stream fed to the CO shift reactor. The water reservoir vessel contains a water-methanol mixture having a mixing ratio effective to ensure adequate frost protection.