Abstract:
An improved system for elevator control system is disclosed in which the past traffic demand data that have occurred during a plurality of the same predetermined past unit time periods as the current time period are studied so that these past data may be reflected in the group control of the elevator operation. If the data for a day with different traffic demand from a usual value were studied during the study of past traffic demand that occurred in the course of said predetermined unit time periods, the resulting preestimation would be inaccurate. In view hereof, according to the present invention, any traffic volume data that is markedly different from the traffic demand so far encountered is not studied or, alternatively, the data for a day of the week on which the traffic demand is different from the usual value, such as Sunday, is not studied, thus enabling more accurate preestimation of traffic demand for the unit time period beginning with the current time.
Abstract:
The disclosure concerns a group supervisory control system for an elevator having statistical traffic data for the elevator from a past time interval and controlling the operation of the car dependent on the statistical data wherein the system comprises an operating apparatus which detects the distinction points of the variation of the traffic data to output traffic data and time for the distinction points as statistical data.
Abstract:
Provided are techniques for performing cloud-based elevator dispatching resource management. The techniques include receiving usage information of one or more elevators of an elevator system, obtaining configuration parameters of a controller configured to control the one or more elevators, and analyzing a performance of the one or more elevators based at least in part on the usage information. The techniques also include dynamically updating the configuration parameters of the controller based on the performance and the usage information, storing the configuration parameters and corresponding performance, and operating the one or more elevators based at least in part on the updated configuration parameters.
Abstract:
According to an aspect, there is provided a method for forecasting elevator passenger traffic of an elevator group. The method comprises training a statistical traffic model describing a traffic profile for a specific cycle with historical timestamped origin-destination passenger counts, obtaining timestamped origin-destination passenger counts for a current cycle, generating an elevator passenger traffic forecast based on the trained statistical traffic model and the timestamped origin-destination passenger counts for the current cycle, and outputting the elevator passenger traffic forecast for use by an elevator group control.
Abstract:
Embodiments of the present invention provide a method, system and computer program product for smart elevator car destination management according to probabilistic destination determination. In an embodiment of the invention, a method for smart elevator car destination management according to probabilistic destination determination includes predicting a set of passengers requesting use of an elevator car in a bank of elevator cars in a building and determining a probability for each of the passengers that each passenger will select as a destination a particular floor in the building. The method also includes grouping ones of the passengers in the set according to a common floor determined to be probable for the grouped ones of the passengers. Finally, the method includes displaying in connection with the bank of elevator cars an assignment of the grouped ones of the passengers to one of the elevator cars in the bank.
Abstract:
Embodiments of the present invention provide a method, system and computer program product for smart elevator car destination management according to probabilistic destination determination. In an embodiment of the invention, a method for smart elevator car destination management according to probabilistic destination determination includes predicting a set of passengers requesting use of an elevator car in a bank of elevator cars in a building and determining a probability for each of the passengers that each passenger will select as a destination a particular floor in the building. The method also includes grouping ones of the passengers in the set according to a common floor determined to be probable for the grouped ones of the passengers. Finally, the method includes displaying in connection with the bank of elevator cars an assignment of the grouped ones of the passengers to one of the elevator cars in the bank.
Abstract:
Embodiments are directed to receiving, by a computing device comprising a processor, an identifier associated with a mobile device based on a passive transmission of the identifier by the mobile device, and based on the receipt of the identifier, scheduling at least one service associated with an elevator system based on an anticipated demand for the at least one service.
Abstract:
An elevator control system including an elevator management system obtaining meeting information from at least one of a calendar system and a user interface; the elevator management system generating a control command in response to the meeting information; and an elevator controller controlling destinations of one or more elevator cars in response to the control command.
Abstract:
A method of controlling an intelligent destination elevator control system streamlines the control of two or more destination elevators. Operations of a group of destination elevators are monitored to gain experience about how the population is served by the group of destination elevators that serves a building or a building zone. The analysis of measured and/or modeled data and conditions with data about traffic patterns and traffic characteristics enables the system to dynamically control the destination elevators. The system may enhance passengers' experience through efficiency and/or with an improved comfort level.
Abstract:
Provided is an elevator group control apparatus which brings distributed standby control into action when the movement of users is heavy in one direction in an unbalanced manner in time zones which account for large proportions of an elevator use condition of a day, for example, in off-hour zones and time zones in which traffic demand is relatively small, thereby improving the waiting time of users, and does not bring distributed standby control into action when there is no unbalanced condition of the movement of the users, whereby it is possible to perform energy savings by reducing power consumption during runs without greatly worsening the waiting time of the users.In an elevator group control apparatus which performs the operation control of a plurality of elevators, there is detected a downward traffic flow ratio of traffic flows departing downward from floors higher than a prescribed main floor in the total traffic flow departing from one floor to another. If the downward traffic flow ratio is not less than a prescribed reference value, a standby mode for downward traffic flow is made effective. If the above-described standby mode for downward traffic flow has been made effective, at least one elevator car is caused to be on standby on a floor higher than the main floor and at least one elevator car is caused to be on standby on the main floor.