Abstract:
The present invention provides a miniature device that comprises a grounded layer, an insulative layer overlying the grounded layer and a conductive layer overlying the insulative layer wherein the insulative spacing between the conductive and grounded layers is increased so as to inhibit electrical shorting between the conductive layer and grounded layers. A method of making miniature devices is also provided.
Abstract:
The present invention provides a fabrication process that integrates high-aspect-ratio silicon structures with polysilicon surface micromachined structures. In some embodiments the process includes forming an oxide block by etching a plurality of trenches to leave a plurality of vertical-walled silicon structures standing on the substrate, thermally and substantially completely oxidizing the vertical-walled silicon structures, and substantially filling spaces between the oxidized vertical-walled silicon structures with an oxide of silicon to form the oxide block. The process retains not only the high-aspect-ratio silicon structures possible with deep reactive ion etching (DRIE) but also the design flexibility of polysilicon surface micromachining. Using this process, polysilicon platforms have been fabricated, which are actuated by high-aspect-ratio combdrives for many applications such as x-y-z stages and scanning devices. The actuators include an asymmetric combdrive that actuates in torsional/out-of-plane motions, and a high-aspect-ratio combdrive that drives in translational motion.
Abstract:
A novel process for fabricating an integrated circuit sensor/actuator is described. Silicon islands are created by forming deep trenches in a substrate and lining the trenches with oxide. This forms silicon islands substantially surrounded by electrically isolating oxide. The anchor portion of the sensor/actuator beams is connected to the islands and is released from the substrate and therefore is also electrically isolated from the substrate. The IC sensor/actuator is manufactured by forming deep trenches in a substrate. These trenches preferably surrounding substrate material on three sides and the bottom, thus creating "islands" of substrate material surrounded by trenches and leaving one side of the island uncovered by the trench; lining the trenches with electrically insulating material, such as an oxide, thus surrounding the substrate material island with an electrical insulator; forming sensor/actuator beams in the substrate material such that the beams contact the uncovered portion of the islands; and using release etching, isolating the sensor/actuator beams from the substrate. The island/beam structure may be connected to a CMOS or other IC structure using conventional metalization processes.