Abstract:
A fully automatic deionizer comprising five sub-systems for removing ionic contaminants from various liquids at low energy consumption is devised. Based on the charging-discharging principle of capacitors, the deionizer conducts deionization through applying a low DC voltage to its electrodes for adsorbing ions, while more than 30% of the process energy is recovered and stored by discharging the electrodes. At the mean time of discharge, surface of the electrodes is regenerated on site and reset for performing many more cycles of deionization-regeneration till the desirable purification is attained. In one moment, both deionization and regeneration proceed simultaneously on different groups of electrode modules, and in the next moment the electrode modules quickly switch the two processes. Such swift reciprocating actions are engaged in synchronized coordination of sub-systems of electrode modules, energy management, fluid flow, and automatic control.
Abstract:
This invention relates to a method and apparatus for the disinfection of water and wastewater contaminated with bacteria and other microorganisms. The apparatus includes an electrolytic flow cell including electrodes forming a part of flow pipe or open channel through which water or wastewater passes. The electrodes are formed of iron, stainless steel, carbon or copper and connected to a power supply voltage in the range of 20 to 100 volts and establishing a current in the range of 1 to 6 amperes. Disinfection results from either metal ions impacting microbial cells or through the generation of hydrogen peroxide, hydroxyl radicals and hypochlorous acid. When the electrodes are copper, toxic metal contamination limits are established through proper design of the flow cell. An ultrasonic transducer is connected to the electrodes and enhances hydroxyl radical generation.
Abstract:
An ozone generator which operates at constant pressures to produce a continuous flow of ozone in an oxygen stream having from 10% to 18% by weight of ozone. The ozone generator includes one or more electrolytic cells comprising an anode/anode flowfield, a cathode/cathode flowfield, and a proton exchange medium for maintaining the separation of ozone and oxygen from hydrogen. The ozone generator also has an anode reservoir which vents oxygen and ozone and a cathode reservoir which vents hydrogen. The anode reservoir can be filled from the cathode reservoir while continuing to produce ozone. The ozone generator is readily configured for self-control using a system controller programmed to operate the anode reservoir at a constant pressure.
Abstract:
An under the counter water treatment system. Water from an outside supply source, such as a municipal water line, is provided to user's home. A prefilter to remove sediment, organic compounds, and certain pollutants is first provided. After the prefilter, the water enters a reverse osmosis system which includes an osmotic membrane. The reverse osmosis membrane filters out impurities and very small particles to provide highly purified water. The outflow of the reverse osmosis filter is stored in a water tank. Water is removed from the tank by releasing an appropriate valve when the user wishes to drink the water. When the water exits the tank, it passes through a mineral supplement which adds minerals to the water beneficial to human or animal consumption. It then passes through an electrolytic cell having a plurality of plates.
Abstract:
A method for separating contaminants from a aqueous source containing contaminants. In one embodiment, the method involves the use of a high powdered oxidant dissolved within the aqueous system. The gas is dissolved within a reservoir in the aqueous solution and the pressure within the reservoir is controllable. This allows maximum contact of the oxidizing dissolved gas with the contaminant material. Once oxidized, the outlet of the reservoir is adapted to permit hydraulic cavitation. The net effect of the cavitation is to induce a foam formation which foam transports a floc into a separate phase from the aqueous solution. In this manner, the process is effectively a dissolved oxidizing gas mass transfer process. In another embodiment, the process may be augmented by electrocoagulation. This involves the use of an electric cell which is disposed within the reservoir containing the oxidant material. By providing electrodes and exposing the electrodes to a source of current, the contaminants within the aqueous solution are either oxidized or otherwise degraded and this complements the oxidation by the dissolved gaseous oxidant. An apparatus is also disclosed to effect the methods set forth above.
Abstract:
An amperometric bromine control system accurately maintains a desired concentration of bromine within a home spa or in other water features. The control system employs amperometric sensing to measure the bromine concentration in the spa water and uses this measurement to control the electrochemical production of bromine through the oxidation of aqueous bromide. The level of bromide in the spa water desirably is greater than 50 ppm in order to obtain a linear relationship between the current level sensed through the amperometric measurement and the concentration level of bromine in the water. In this manner, the control system can accurately measure the bromine concentration in the spa water and precisely maintain the bromine concentration within a desired range between about 2 ppm and 6 ppm.
Abstract:
The invention provides an electrolytic ionized water generator wherein a flow meter is installed in a discharge flow path of an acidic water with such constituents as calcium, magnesium, and the like removed, which is generated by electrolytic processing of city water in an electrolytic cell, solving a problem of degradation in precision of the flow meter over time due to adherence of the constituents of city water such as calcium, magnesium, and the like to the flow meter.
Abstract:
A production system of electrolyzed water includes an electrolyzer the interior of which is subdivided into an anode chamber and a cathode chamber by means of a cation permeable membrane, a diluted brine tank arranged to store an amount of diluted brine to be supplied into the anode and cathode chambers of the electrolyzer, first and second water supply conduits connecting the brine tank to the anode and cathode chambers respectively, and first and second electrically operated hydraulic pumps provided on the first and second water supply conduits to supply the diluted brine from the brine tank into the anode and cathode chambers. To prevent an electric motor for the hydraulic pumps from corrosion caused by backward flow of electrolyzed water in the production system, the hydraulic pumps are deactivated upon the lapse of a predetermined time after application of the DC voltage to an anode and a cathode in the anode and cathode chambers has been interrupted.
Abstract:
Improvements on the electrolytic reactor and process of U.S. Pat. No. 5,419,816 and copending U.S. application Ser. No. 08/400,950, filed Mar. 9, 1995, now U.S. Pat. No. 5,609,742, are disclosed for the controlled oxidation and reduction of inorganic and organic species in dilute aqueous solutions. More specifically, other physical forms and additives for the modified ion exchange material can be used in the packed bed electrolytic reactor, including powdered ion exchange materials and solid membranes containing the modified ion exchange materials. Direct contact with only one electrode, the anode for oxidation, and the cathode for reduction, is required for the modified ion exchange resin, instead of with both electrodes. Superior performance is also demonstrated for bipolar operation of the electrolytic reactor in comparison to monopolar operation. Preferably, the polarity of the electrodes is reversed every 1 to 60 minutes. Finally, other point of use applications are disclosed for the electrolytic reactor and process, including sanitization and sterilization, such as useful in the medical, dental and veterinary industries, food and animal disinfection, bacteria control and waste treatment.
Abstract:
An ionized water stably maintaining a strong pH value for a long period is manufactured. Plural electrolytic cells disposing cylindrical cathodes and anodes across a cylindrical electrolytic diaphragm with a bottom made of clay ceramics are disposed in an electrolytic bath. Alkaline ionized water produced in the electrolytic diaphragm is supplied into the electrolytic diaphragm of the adjacent electrolytic cell, and electrolyzed in the electrolytic cell. In the electrolytic diaphragm of each electrolytic cell, crystalline clay minerals are dissolved, and alkaline ionized water of high intensity is sequentially produced, and at the outside of the electrolytic diaphragm of each electrolytic cell, crystalline clay minerals are dissolved, and acidic ionized water of high intensity is sequentially produced.